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The paper* investigates optimum processes in systems whose
behavior is described by difference boundary problems for partial
differential equations.

The majority of physical processes which are encountered by the
engineers during their practical activity can be controlled; and,
consequently, during their rcalization, one strives to attain the optimum
(in some sense) alternative. The maximum principle of L.. S.
Pontryagin] appears as a mathematical method for the solution of
problems of optimum control when the processes may be described by
the ordinary differential equations. However, numerous control
processes are described by partial differential equations with additional
(boundary of initial) conditions. These equations may be of diverse
type (equations of mass or heat exchange, equations of hydro or aero-
dynamics, heat transfer, kinetics of chemical reactions, etc). If the
behavior of the control system is described by equations among which
there are some with partial derivatives, then it is called a system
with distributed parametersz. In numerous simpler cases, such
systems may be described by differential-differences ecquation; and,
consequently, one can still apply the maximum principle3 .

The problems of optimum control of more complicated systems
can not be solved directly by means of the maximum principle of L. S,
Pontryagin (see article by Kharatishvili®, pp. 516-518). Consequently,
attempts have been made to generalize this principle in such a way that
by its application one could investigate control processes of more
complicated systems with distributed paraxneters5‘6'7'8‘9’10’“’12’13'14’15.
In particular, the work'° proposed a method based on the use of
differential equations in Banach spaces. In numerous cases, such an
approach allows the investigation of partial diffecrential equations as
if they were ordinary differential equations and solves the problem of

optimum control using as the optimality criterion the functional

T
I :f f£(t, x(t), u(t)) dt . (1)
t0

In spite of obvious advantages, this method has also substantial short-
comings since the introduction of Banach spaces requires additional
limitations on the class of permissible controls which are not caused
by the physical essence of the problem. In addition, the choice of the

*The basic content of the work was presented at the seminar of
L. S. Pontryagin on theory of optimum processes, 13 February 1964,



functional (1) as the optimality criterion for the problem with partial
differential equations is not as successful as in the case of problems
with ordinary differential equations. In particular, the indicated
method does not solve the important practical problem in which the
functional (1) is substituted by an integral evaluated over a surface
bounding the domain with which the equations are under investigation.

Of definite interest is the method'’ based on the representation of
control quantities by means of integral relationships. However, its
justification can not be viewed as satisfactory. In addition, the applica-
tion of this method to processes described by boundary problems with
partial differential equations can not be considered sufficiently efficient
because of the following reasons. First, the reduction of boundary
problems to integral equations can not always be carried out though the
problem can still be solvable by other methods. Second, it is always
desirable to have optimality conditions expressed directly through
quantities entering the equations and additional conditions.

In the present work, we used the method of solution which is to
an cqual degree applicable to the cases of hyperbolic, parabolic, and
clliptic equations. Using this method, L. I. Rozopoer16 studied the
casc when the control process is described by ordinary differential
equation and finite differences cquations. In subsequent works”, we
obtained invariance coefficients for systems relative to the external
interactions whereas the starting point for investigation was a formula
for functional increments found in the work of Rozopoerlé. Analogous
results (though only for special cases) were obtained also for systems
with distributed parameters.

The paper consists of five sections. In Sections I and II we
investigate various problems of optimum control of processes
describable by boundary conditions for hyperbolic equations with data
on characteristics. The necessary optimality conditions are formulated
in the form of a maximum principle.

In Section III we establish connection of the investigated problem
with the problems of variational calculus. It is shown that the Euler-
Ostrogradskiy equations can be derived from the maximum principle
if the control domain coincides with the entire space. If this domain
is closed, then along the optimum surface one may find that the
Legendre conditions are even not satisfied,




In Section IV we study problems of optimum control when processes
are described by the boundary conditions for parabolic systems. We
obtain a formula for the functional increment by means of which one
finds the optimality conditions. These results are extended to analogous
problems connected with the elliptical and hyperbolic systems.

Section V is devoted to the problems of the invariance theory. For
linear equations we obtain the necessary and sufficient conditions for
invariance relative to the external interaction whereas the criteria of
invariance we choose functionals analogous to those investigated in
Sections I through IV,

The author uses the occasion to express his gratitude to L. S.
Pontryagin and the participants of his seminar for their interest in the
present work, In addition, the author is sincerely grateful to V. G.
Boltyanskiy, O. A. Oleynik, and Yu. V. Yegorov for very useful
discussions of the results obtained in the paper.



Section |. OPTIMUM PROCESSES IN SYSTEMS WHOSE BEHAVIOR
IS DESCRIBED BY HYPERBOLIC EQUATIONS

1. Formulation of the Problem. Optimality Conditions
Let the control process be described by a system of equations

Zixy fi(xo vy 210 oo s Zmy 4 o- e s Zmixs iyt o Pmy V),

i=1,...,m, (t-1)

where the functions fj have within the domain G(0 = x < X, 0= y = Y)
continuous derivatives of the first order in x and y and twice continuously
differentiable over other arguments. As a class of permissible controls,
we use the set of sectionally continuous functions v = v(x, y) defined
within the region G and with values within a certain bounded convex
domain V (open or closed) of the r-dimensional cuclidian space. We
assume that the line of discontinuity of the permissible control is
sufficiently smooth. We imposce onto the function z; defined by equations
(1. 1) certain boundary conditions (Goursat conditions)

2; (0, y) = ®i(y) » zi(x, 0) = dp(x) , i =1, ..., m, (1.2)

where o) and Yi arc continuous, scctionally continuously differentiable
functions defined within the domain G and satisfying matching conditions

Each permissible control may be associated with a unique solution

206 y) = {2, (0 y) e e v

of the problem (1.1)-(1.2) having derivatives Zixy integrable over the
domain G (sce work of Budak and Gorbunovls). However, here one

should distinguish two cases.

1) If the line of discontinuity of the function v (x, y) is parallel
to one of the coordinate axes, the boundary problem (1.1)-(1.2)
decomposes into two analogous problems within the regions bordering
onec to another along that line. By solving consecutively these problems,
we determine the solution of the original problem which may be
continuous within the domain G and everywhere except along the points




of the discontinuity line of control v(x, y), and will have continuous
derivatives z;y (X, vy), Ziy (%, v), and zixy(x, y) (see work of Budak
and Gorbunovls). o

2) Let the discontinuity line T of the function v (x, y) have no
common sections with the characteristics of the system (1. 1) over
any segment different from zero. Under the solution of the boundary
problem (1.1)-(1.2) we understand the function z (x, y) which satisfies
the system of equations (1. 1) in all points of the domain G not lying on
I and the conditions (1. 2) together with certain a priori given conditions
of smoothness along I'" (see work of Yegorov19). Such a solution is
uniquely determined; it is continuous within the domain G and has

sectionally continuous derivatives zjy, and z;

Ziy’ XY'
Consequently, in what follows we will assume that to each per-
missible control one can associate a class of functions for which the

boundary condition (1. 1)-(1.2) can be uniquely solved,

Let Aj, i = 1, ... , m, be a given system of real numbers., Let
us take an arbitrary permissible control v(x, y) and denote by z (x, y)
the respective solution of the problem (1.1)-(1.2) and study the
functional

Az (X, Y) . (1.3)

Ma

-
I
—

where X and Y are constants entering into the definition of the domain G.

The problem is then: among all the permissible controls one is
supposed to find such a control v(x, y) (if it exists) that over the solution
z{x, y) of the Goursat problem corresponding to this control the
functional S attains its largest (smallest) value.

We will call the permissible control realizing the minimum
(maximum) of S the min-optimal (max-optimal) control according to
S (sece work of Rozopoorlé).

Note that the problem (1. 1)-(l.2) under consideration is of great
theorctical and practical interest. The study of the solvability of this
problem for various assumptions relative to the function f;, @, and 3

20, 21, 22, 23, 24, 25 . 26, 27, 28
T **7, It is also known™"

is the object of extensive literature
thatl the study of sorption and desorption of gases, drying processes,
and the like reduces to such a problem., The prescence of control para-

meters in Equations (1.1) allows the control process, and in numerous



cases the selection of the best operating conditions which (from the
mathematical point of view) reduces to the calculation of the maximum
or minimum of a certain function. In numerous cases the problem may

be reduced to the study of the functional (1. 3). Let us investigate certain
examples,

1) One is supposed to minimize the functional
I :ff fo (<, v, 2z, zx, Zy, v) dxdy
G

If we introduce a new variable z, by putting
Zoxy = fy(x, vy, 2z, zx, Zy, v), zy, (0, y) = zy(x, 0) = 0, (1.4)

the problem reduces to the calculation of the minimum of the function
S = z,(X, Y) which represents a special case of the functional (1. 3)

and is defined over the functions z, . , Zm specified by the totality
of the relationships (1. 1)-(1.2) and (1. 4).

2) One is supposedto minimize the functional I = ®(z,(X, Y),
cee s Zm (X, Y)), where @ is a twice continuously differentiable function.

We introduce a new function z, (x, y) by means of the equation

2 FO(z, (%, y), vor s 2m(Xs V)
Zoxy © Z

ZiwZ
0zi0zk ixZky
i, k=1
m
+§ : ad £ )
- 1 X, b H b Z 3 V
| P i Vs Z, Zy y
1 =1
and additional conditions
2500, y) = (0, (y), «ev » P (Y), 2o (x, 0) = B4y (x), ... , b_(x)).

This reduces the problem to the study of the functional S = zo (X, Y).

L
[N




3) Onec is supposed to minimize the functional

X

1 :f F(x, z(x, Y), zu(x, Y)) dx .
0

We introduce the auxiliary function z, (x, y) by means of the
equation

m
_ 5% oF
Zoyz © ZZI l:_az- Ziy+ fi(x, vy, z, 24, Zy v):l
and additional conditions

2 (0, ¥) = 0, zo(x, 0) = [ Fx, ¥(x), ' (x)) dx .
0

4) In an analogous manner one investigates the problem
concerning the minimization of the functional

e
I :f F(y, (X, y), zy(X, y)) dy .
0

For the solution of the formulated optimum problem one introduces

the auxiliary functions u , U, by means of the equation

1°

G = 9H( vy, P, V) _d_<8H(x, Y, P V)> _ deH(x, y, p, V)
wey 9z dx zix dy 9ziy
(1.5)

and additional conditions

dH (x, Y, p, V)

., (x, Y) = - ,
(1.6)
3 H (X, vy, p, r) oA
4y (X, y) = - o L u (X, Y) = AL



where A; are constants entering into the definition of the functional S,

p:(Zl,..., Z1m s lll,..., Ums z ce e s ZmMxs Zly,..., Zmy) y

H = E ul X Y, Z, Zx: Zyr V)

Conditions (1. 6) represent ordinary linear differential equations
with initial conditions.

In the general case, the right-hand side of the equations (1. 5)
contains functions zjxyx, 2Zjyy, Vx, and v,,. However, from the conditions
imposed on Equations (1. 1) and the permissible controls, it does not
follow that such derivatives must exist. Consequently, we will assume
in what follows that the function f; may be represented in the form

m m
fi = Z aijk(x’ y, z) ZkxZjy + Z bij (x, v, z) Zix
j,» k=1 ] =1
m
+ Z € (x, v, z) Zjy +di(x, y, z, v) .
je1

where the functions a; ., b1J Cij> and d; are continuously differentiable
over x and y and are twice continuously dlfferentlable over the other
arguments, If it turns out that ale’ b1 , and c:: do depend on v, then
one must require that the permissible Controls Lave sectionally

continuous derivatives vk (x, y) and vy(x, v).

While satisfying these conditions, the system of linear equations
(1.5) has scctionally continuous coefficients and together with the
additional conditions (1. 6) determines uniquely u, (x, y), ... , um(x, V)
for each permissible control. Consecquently, in what follows we will
assume that the function f; and the permissible controls are such that

the boundary problem (1.5)-(1.6) be unique solvable for each permissible
control.

We will say that the permissible contirol v(x, y) satisfies the
condition of maximum if the relationships

H(x, y, p(x, y), v(x, ¥)) (7)) sup H(x%, y, p(x, y), v) , (1.7)
vEV




is satisfied with z (x, y) and u(x, y) - the solutions of problems (1.1)-
(1.2) and (1.5)-(1.6) corresponding to the control v(x, y), while the
symbol ((=)) denotes equality valid in all points of the domain G

(0 £ x =X, 0 v = Y)while there may exist sets of points lying over
a finite number of lines with zero surface., The conditions of minimum
is defined in an analogous way.

THEOREM 1 (the principle of maximum). For the permissible

control b(x, y) to be min-optimal (max-optimal) according to S, it is

nccessary that it satisfies the condition of maximum (minimum).

Although this thcorem does not supply sufficient conditions for
the existence of optimum control, it may be utilized for the practical
solution of the optimum problem. As a matter of fact, the solution
of this problem, according to the principle of maximum, lcads to the

neced of determining 2n + 1 unknowns zj, u;. and v from the 2n + |

i
Equations (1.1), (1.5), and (1.7). First 2n relationships represcent
sccond order differential equations whose solution in general generates
4n arbitrary functions. To climinate them we have 4n additional
conditions (1.2) and (1.6). This is sufficient to define, generally
speaking, the separation of the solution of the problem (1.1)-(1.2)
satis{ying the conditions of the maximum principle. If it appears from
the meaning of the problem that the optimum problem must have a
mandatory solution, then at least one of the discovered isolated solutions

must be the desired one.

2. The Formula for the Increments of the Functional S

To prove Theorem 1, we study the functional

m
Ilp. v] = ff|:z: Uizixy - H{x. v, p, \')} dx dy
G 1 =1

If v is a certain permissible control and z = z(x, y) a solution of
the problem (1.1)-(1.2) corresponding to this control, then the functional
I is equal to zero for an arbitrary functionu = (u,, ..., Upy).

Let v = v(x, y) be a certain permissible control and z(x, y} and
u(x, y) be the solution of the boundary conditions (1. 1)-(1.2) and (1.5)-
(1.6) corresponding to this control. Let us give the function v an
arbitrary permissible increment Av and let us denote by z + Az and
u 4+ Authe solution of the same problems but corresponding to the
control v + A, It is clear that the functions Azi and Au; satisfy the
conditions



NS

Az, = ,
Xy oy
d d H
Auixy:A—aH. - E‘(A 8H>'d—(Aaa ) P T b
9zi x 0z Yy ziy
(1.8)
and the additional conditions
Az (0, y) = Azj(x, 0) =0 , (1.9)
H(x, Y, p, ' Yy P
Au. (x, Y) = - a FHE PPV)  An (X, y) . adH X Y. P V)
1X 8Ziy iy 0Zj «
(1.10)
Au (X, Y) =0, i=1, ..., m, (1.11)
where

B AH(<, y, Pt Ap v 4 AV) | BHEG Y R V) gy
op; op; 9pi o

Equations (1. 10) are ordinary differential equations where with

linear fi functions

Auj(x, Y) = 0, Auj(X, y) =0 (1.13)

are their solutions which satisfy the additional conditions (1.11).
Because of the uniqueness theorem, functions (1. 13) form a unique
solution of the boundary problem (1.10)-(1.11).

Consequently, in accordance with the above remark,

ATl =I[p + Ap, v+ Av] - I[p, v] = 0. (1.14)

On the other hand,

al :IJ.{ E lAui Azixy + “iAZixy 1 Ay Zixy‘
G i =1

- |H(x, vy, p + Ap, v+ AV) - Hix, y, BV iy . (1. 15)

10

H




The expression under the sign of the integral is transformed by

means of the Green's formula (see work of Trikomi??, p. 196):
{}f (qsXy - squ)dxdy :{ (qsy - sqy)dy - (qsX - sqx)dx ,

where L is the contour limiting the domain G, and q and s - arbitrary
functions having sectionally continuous derivatives of the first and
second order. Since G is a rectangle, the Green's formula may be
reduced to the form

J(;f(qsxy - sayy) dxdy ={latx v s (x, MxXopy Lo

Y

X
:!. (qu)y—O dx '{ (qu)x>2<0dy . (1.16)

Let us insert into this equality q = Au; and s = Az;. Taking into
account Equations (1. 8) with additional conditions (1.9), (1.10), and

(1.11), we obtain after elementary transformations

BF snsngen ffE a8 an sl an,

Z3
Gl_l 1X

oH

8z1y

+ A AZlY]I dXdY .

On the other hand, because of the first m equations of (1.8), we have:

ffE Auy Azixy dx dy :ffrzn: A STH Auj dxdy .
G i=1

From the two last equations we obtain

ff.E Auj Azjyy dxdy = 7]]'2_: A Sy ARdxdy . (117)
G1l1=1 G1~=1
We now substitute into Equation (1.16) q = u; and s - Aél. Then

because of Equations (1.5) and (1. 8) and the boundary conditions (1. 6)
and (1. 9) we have

11



9z ix 974y

Aziy] dxdy . (1.18)

Since the function z; forms the solution of the system of equations

(1.1), we have

ffrzn: Auy zy dxdy = ffz —Z-I-ui Ay dxdy . (1.19)
i 1

G1=1 i =1

Using the Taylor formula, we obtain the cquality

H(x, vy, p+ Ap, v + Av) - H(x, vy, p, V)

& BH(x, y, p, v + AV)

= Z ’ ? - Apl
1 =1 9P
1 X 2 + 0A + A
X - Z O"H(x, v, p p, Vv V) APiAPk
i,k =1 9pi 9Pk
+ H(x, y, p, v + Av) - H(x, y, p, v}, 0 < 96 < 1.

(1.20)

From Equations (1.14), (1.15), and (1.17)-(1.20), it follows that

m
Al = - AiAz (X, Y) - H(x, y, p, v + Av)
1 i Y, P

H (x, v, p+ Ap, v+ Av)
8pi

1 4m
- H(x, y, p, v)] dxdy + 5 gflzz:lg

OH (x, v, p, v + Av)] [aH(X, vy, D, v+ Av)

opi opi

12




2
) oH (x, vy, p, V))Ap dx dy - > ffz ’H(x, v, p+ 98Ap, v +Av)
i
opi Gi, k =1 op; 9Py

Ap.A pdxdy .

Applying to the functionals 0H/9p; the Taylor formula and taking
into account the equality (1. 14), we finally obtain

AS = —ff [H(x, vy, p, v + Av) - H(x, y, p, v)] dxdy - n (1.21)

where

=2 A Az (X, Y)

is the increment of the functional S, N =n + n ,
1 2

4am + Av H(x, y, ps, Vv
Zﬂ‘ oH(x, y, p, v ) oH ( » Py V) Ap; dxdy ,
i - 9p; ap; !

= G Pi 1

f[BZH(X, y,pt04Ap, v+Av) BZH(X,y,p+91Ap,v+Av)
1 G 9P; 9Pk 9p; 9P

o

T M3

i,

ApiApk dxdy . {1.22)

3. The Estimate of the Residual Term 7 in the Formula (1.21)

To establish the necessary estimates of the quantity n we
introduce auxiliary functions a.(x, y) and Bj(x, y), putting

aj = Azjy Pi = Az

Since the function f, satisfies the Lipschitz condition, then from the
first m equations of the system (1. 8) and the condition {1, 9) we obtain

13



Y m r
IaiISNJ.Zl (IAZ1|+|G1I+|Bil)dY+N1f Y lavdy
0ol = 0 k =1

X

A< [ Jag]ax
0
(1.23)

||MB

1

X X T
18;] < Nf (|az| +[ag] +]8;]) & + NlekZ |av, |dx
4] 1 =1

y
|az|< [ |8 dy
0

where N and N; are definite positive constants. Introducing the notation

m m m :
a= 23 (ai . B = 2 U8 . Y = 3 |Aaz],
i =1 i =1 i=1
r
Av = ) |Avy| (1.24)
k =1

we obtain from inequalities (1. 23)

Yy : n
a(x, y) < Nmf a(x, y)dy _+ NmI[B(x, n) + y(x, M] dn
0 0

Y

+ NlmfAvdy , Y = a(x, y)dx
0

O%x

(1.25)
x £
B(x, y) = Nmfﬁ(x, v) dx+NmI[c1(X, y) + B(x, y)] dx
0 0

X Y
+ Nlm! Avdx , y <= f B(x, y) dy ,
0 0

14




where

0 £ x = £=2X, 0=y=mnmn=Y

From this, because of the known lemma (see article by Nemytskiy and
Stepanov30 p. 19), it follows that

Y

n
ate, y) = M [yix, ) + g v dy + Mf Avix, y) dy
0 0

X
B(x, y) = Pi [v(x, y) + a(x, y)] dx + Plf Av(x, y)dx ,
0 0

where M, M;, P, P, are positive constants. Taking into account the
estimates (1.25) for the function y, we obtain

7 Y
sz B(x, y)dy + le Avi(x, y)ydy ,
0 0

IA

CL(X, Y)

X

&
PZJ' af{x, y)ydx + Plf Av(x, y)dx
0 0

IA

B(x, V)

From this we find that

n £ Y X
a(t, n) 3ff0.X de dy+M4ff Avix, v) dx dy
0o 0 0 0

Y
sy Aavig, y)dy
0

(1.26)
n ¢ X
B(E, M) -<-P3ff6(x, y)dx dy + p4ff Avix, y) dx dy
0 0 00

X

+P1f Av (x, m) dx
0

Integrating the first of these inequalities over £ between the limits of 0
and ¢ and applying the above mentioned lemma, we obtain

15



From this and the first inequality (1.26) we have

XY Y
a(x, y) = M(,f f Av (x, y)dy dx + M7f Av (x, vy) dy,
0 0 0

In an analogous manner we find:

XY X
B(x, vy) = P(,ff Av (x, y)dx dy + P7f Av (x, y)dx
0 o 0

From this and the inequality (1. 25) we obtain
XY
Y (x, y) = fo Av (x, y)dy dx

0 0

In this manner, because of (1.24), the inequalities

Az (x, y)| = fo Av (x, y) dx dy
G
Y
Az (x, vy SQlff Av (x, y)dx dy + le Av (x, y)dy ,(1.27)
G 0

X
|Aziy (x, y)‘ = szf Av (x, y) dx dy + sz Av (x, y) dx
G 0
are valid for all x and y (0 = x =X, 0 =y =Y).

Applying an analogous approach to the last m equations of the
system (1. 8), we obtain

|Auy (x, y)| = Q3ff Av (x, y) dx dy . (1.28)

x

16




Since the functions 9H/8p; satisfy the Lipschitz condition, we obtain
from the lirst formula (1.22), because of the inequalities (1.27) and
(1.28):

‘n1|ST<ff Av (x, y)dx dy)Z
G

X Y 2 Y X 2
+T1f lf Av (v, vy) dy dX+T3f[ f Av (x, y) dx dy
0 0 0 0
Consequently,

In, | S (T1XY + T2 Y + T3X)ff‘Av (x, y)|? dx dy ,
o .

and where Tj are definite positive constants.

The functions 82H/8p18pk are bounded in the G region. Consequently,

2

In | S (TaXY + TsY + TeX) [ f [Av(x, v)|* dxdy
G
In this manner, the residual term in the formula (1. 2!) satisfies the
inequality
In] = (A mes G + BX + CY)ff'A.\V(x, y) dedy , (1.29)
G

where A, B, and C are definite positive constants. If the function Av
differs from zero on the circle G_ of radius e, then from (1.29) it
follows that

i =LeJ S AV (x, y) dxdy (1.30)
G

where L does not depend on .
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4. Proof of Theorem 1. The Case of Linear Control System

From the formula (1.21) for the increments of the functional
and the estimate (1. 30) of the residual term within this formula, one
can easily obtain the proof of Theorem 1.

As a matter of fact, let for the sake of definiteness, v(x, y) be a
control which is min-optimal according to S, and z(x, y) and u(x, y) -
the solutions of boundary problems (1.1)-(1.2) and (1.5)-(1.6}
corresponding to this control. Then for an arbitrary permissible
increment Av{x, y) the inequality AS Z 0 is valid. Let us assume
that there exists a point (&, m) within the domain G in which the maximum
condition is not satisfied, i.e., there exists a control v! such that

HE, M p(E, m), vVI>HI(E, n, p (&, 1), v(E, 1) . (1.31)

Since the functions z(x, y) and u(x, y) are continuous and z,, Zy,
and v(x, y) are sectionally continuous, there exists a closed region
gt €¢G containing the point (£, m) in which the left- and right-hand
sides of the inequality (1. 31) are not continuous and, consequently,
are likewise not uniformly continuous. If (§, n) is the point of dis-
continuity of the control v, then it may be obviously related to the
boundary of the domain G'. It follows from the inequality (1. 31) that
one may specify a number 6 > 0 for which

H(x, v, p(x, v}, Vl) -H (x, v, p(x, y), vix, y))> 5 (1.32)

in all points (x, y) € G, C Gl , where G, - circle of radius ¢. Let us
introduce the control

1

vix, y)at (x, y) € G,
(<, y) =
v at (x, y) € G

Then because of the relationships (1.21), (1.30), and (1.32)

AS = - ff'H(\, v, p(x, v), vl) - Hix, vy, p(x, y))de dy - 1
G

< - /]6(1){ dy +|n| = - ./:/.?6 - el 1AV (x, y)’zzdxdy ,
G Ge

€

where Av = v - v(x, v). Since the function Av is bounded, one may
choose the number € so small that the expression within the square
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brackets in the first part of the last inequality may be positive. Then
AS will become negative which contradicts the assumption about the

min-optimality according to S of the control v(x, y). This proves the
theorem.

Formula (1. 21) for the increments of the functional together with
the formulas (1.22) for the remainder term allow the establishment

of a more general result for the linear boundary problem.

As a matter of fact, let the control process be described by the
boundary problem

zi(0, y) = g;(y), zi(x, 0) = jx), . (0) = ¥(0), (1.33)

and let search for the control over which the functional S attains its
minimum (maximum) value. In such a case

m
H(x, y, p, v) = Z uj [Cikzkx + dikzky t gikZk
i, k=1
m
+ 2 uifi (v)
i=1

and the function u; forms the solution of the boundary problem

- d d
. — . — ~1a e (d1;
Hixy 1;1 |gkivk - = (ciiui) ay (ki a)| \
m
Wi (5, Y) = - D0 dki (%, V) g (x, Y)
k=1 > (1.34)
1m
Uiy (X, y) = - Z cki (X, y)uk (X, y) ,
k=1
u; (X, Y) = -A; i=1, , m )

19



Since according to what was proved earlier
Au: (x, Y)=A4Au; (X, y)=0

(see formulas (1.13)) we find

Aui (x, vy) 0
Furthermore,

OH(x, vy, p, v+ AvV) ati(x, v, p, V)
owy Ow;

W = (ZI,---:Zm»--',Zly;---,any)

Conscquently, n1 = 0. We now calculate nz. We have

9°H (x, v, p, V)

= 0 i, k = 1,...,3
Owidwy ! m

This means that

f/]l (x, vy, p+ NAD, v+ AV
:1 =~ du; 0w

9%h (x, y, pt06i14Ap, v+ Av)r
duj oWk

1

AuiAWk dx dy

Since Aui(x, y) = 0, it follows that n, = 0. Conscquently, in the case
under investigation, the formula (1.21) takes the form

_-ff ‘H (x, v, p, v+ Av) - H(x, vy, p, v)jdx dy . (1.35)
G

By means of the last formula one can easily prove:

THEOREM 2. For the permissible control v(x, y) of the boundarv
problem (1. 33) to be locally min-optimal (max-optimal) according to S,
it is necessary and sufficient that it satisfies the condition of maximum

(minimum).
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5.  The Control of o System by Means of Boundary Conditions

Until now we assumed that the control is carried out only by
means of the function v entering into Equation (1.1) or (1.33). The
boundary values (1. 2) of the function z; were considered fixed. How-
ever, the method which is presented permits the solution of a more
general problem,

Let the control process be described by the system of equations
(1.1) while the boundary values of the function z; are specified not by
the conditions (1. 2) but by means of the differential equations

Zly(o) Y):Cpl(Y) Zl;---yzm; Vl) H

(x, 0) =i (%, 21,...,2m V) (1.36)

Zix

and initial conditions

z; (0, 0) =z , i=1,...,m , (1.37)

where the functions ¢; and y; are continuous over y and x and twice con-
tinuously differentiable over the remaining arguments. vy and v, are
control parameters taking values from the domains v! and V? of s- and
t-dimensional euclidian spaces, respectively.

The presence of parameters within Equations (1. 36) permits the
control of the process by means of boundary conditions. To the per-
missible controls within Equations (1.36) we relate also the sectionally
continuous functions v’ (y) and vE (x) with values in the regions v! and
v2 respectively. It is known (see, for instance, work of Sansone“,
pp. 16 and 17) that each pair of permissible controls v (y) and vz(x)
determines by means of Equations (1.36) and conditions (1.37) a
unique pair of absolutely continuous functions z(0, y) and z(x, 0). We
will understand in all what follows under permissible control within the
boundary problem (1.1)-(1.36)-(1.37) the function

w(x, y) = (v(x, v), v} (y), ¥v° (x)) ,

whose components are sectionally continuous functions with values in
the domains V, V!, and V?, respectively., Consequently, to each per-
missible control w(x, y) there corresponds a unique solution of the
boundary problem (1.1)-(1.36)-(1.37) with the same smoothness con-
ditions which we introduced for the boundary problem (1,1)-(1.2).

Let us introduce the notation
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q:(Zl,-.-,Zm: uly---y.urn) ’

1
1
Hi (y, q, v1)=zui<pi (y, z. v) ,
i=1

m
Hy (x, q, v2) = 2, ugd (x, 2, v7)
i=1

The function uj is defined by means of Equation (1.5) and the additional
conditions (1. 6).

In the general form one is not able yet to solve the optimum problem
with boundary conditions (1. 36)-(1.37). However, it may be solved
using the above described method if the following conditions

afk (X: Y: Z, ZX’ ZY’ V) _ aLl'Jk (X> Z: VZ)
0ziy =0 9z5 ’

) (%, ¥, 2, zx, Zy, V) _ ok ly, 7z, V) (1. 38)
0z3x <=0 0z; ’

k,i=1,...,m , vev , ~vevt, viev: ,

are satisfied.

Thus in. what follows we assume that the conditions (1. 38) are
satisfied and, consequently, that for an arbitrary function u(uy,. .. ,um)
the equalities

OH (x, y, p, V) _8H, (x, g, v¥)
aziy y=0 0z;
1.38'
OH (x, y, p, v) | _ oM (y, q. v}) (1389
9z3 <=0 0z;

are satisfied no matter what the values of v, vt , and v¢ from the
regions V, v!, and Vz,respectively are.

We will say that the permissible control w(x, y) in the boundary
problem (1.1)-(1.36)-(1.37) satisfies the maximum conditions if
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H(x, v, P(x, y), v(x, y)) ((=)) supH (x, vy, p(x, y), v) ,
veEV

H, (y, q (0, y), v' (y)) (=) sup Hi (y, q (0, y), v') , (1.39)
H, (x, q(x, 0), v (x)) (=) sup H (x, q (x, 0), v) ,
viE vl

where z(x, y) and u(x, y) are the solutions of the boundary problems
(1.1)-(1.36)-(1.37) and (1.5)-(1.6) corresponding to the control w(x, y)
(vix, v), Vl(y), VZ(X)) while the symbol (=) indicates an equality which is

valid almost everywhere within the domain of the change of the argu-
ment. The conditions of minimum are defined in an analogous manner.

THEOREM 3. For the permissible control w(x, y) in the boundary
condition (1.1)-(1.36)-(1.37) to be min-optimal (max-optimal) according

to S, it is necessary that it satisfies the conditions of maximum

(minimum).

The proof of this theorem is carried out following the same scheme
as in the case of the proof of Theorem 1: one first finds a formula for
the increment of the functional followed by the estimate of the residual
term, and only then one proceeds to prove the theorem.

For the establishment of the formula for the increment of the
functional, we take an arbitrary permissible control w(x, y) and
denote by z(x, y) and u(x, y) the solutions of the boundary problem
(1.1)-(1.36)-(1.37) and (1.5)-(1.6) corresponding to this control. Then
the equality

m
I [p, w’ = -é:/'[; UizZixy - H (0 y, P, v)| dx dy

[

Im
3wk, 0) zgy (%, 0) - He (x, q (x, 0), v*)|dx
i=1 J

+
J‘.—\x

~

Y rm
+f E uj (0, y) ziy (0, y) - Hi (y, q (0, y), v )| dy =0
0 | i=1 |

is valid.
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Let us denote by Aw the arbitrary permissible increment of the
control w(x, y) and by Az and Au the increments of the functional
z(x, y) and u(x, y) corresponding to this control. It is clear that

AI:I[p+Ap, w+Aw| —I[p, wI:O .

To transform AI we start from the equation

X Y
/ﬁqu dy dx +f p (x, 0) gy (x, 0)dx +f p (0, y) q4 (0, y) dy
G

0 0

X
= ,/:/;ley dy dx - f q (X: Y) px (X’ Y) dx
G 0

Y.
- [ et ey ay e X, VY a X, v)
0

+ p (0, 0)q (0, O) , (1.40)

which is valid for arbitrary twice sectionally continuously differentiable

functions p and q which equation may be derived from the Green's
formula (1.16).

After putting into Equation (1.40) p = Au; and q = Az; and taking

into account the conditions (1.38'), we find
m X m
ffz AujAz;, dx dy +f > Ay (x, 0) Az (x, 0) dx
G i=1 i} 1=1
Y m m oL
+ / Z Auj (0, y) Azjy (0, y)dy = ﬂZ[ATAZI
0 1=1 G 1=
oH oH
+ A — Azj  + A — Az, |dx dy
9z 1x 3ziy 1Y]
X m
_f Z [Auix (x, Y)+ A Ot (x, Y,ap C, Y), V)]Azi (x, Y)
0 i:l zly

24




+fZAuOY (Oydy—ffz

1=1

[ 0), v2)
+ f Z A 2 (%, a4 (%, >V Ay (x, 0)dx
0 i=1

ouy

(o oH 0, y), v
+I > a 1 (v a(0, v). v Aug (0, y) dx
0

i=1 8L1.1
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From the two last equations we obtain

jfz AujAziy dx dy + J‘ > Auj(x, 0

1=1 i=1

Az (x, 0) dx

4m
ZAui(O y) Az (O y) y——szA—Ap dx dy

+ )
0 1=1 i=1

x
2m 2
a 3 O ’
[ 5 st ate 009 (o) a
0

1i=1 94i
Y
2m 1
0,
f AL 900 Y) V) Aqg o, y) dy (1.41)
195

—

Furthermore, using the same method as during the derivation
of formulas (1. 18) and (1. 19), we find

fIZ u: AzX dx dy + f > u; (2, 0) Azjx(x, 0) dx

1=1 i=1

X
m 2
¥ _[E OH, (. alxs 00 V) A ui(x, 0y a
0 1=1 Jzi
Y m
~ OH.(v, a(0, v). v') . . . . -
4 2 R ) 5 _ Az (0, y)dy (i.:-
0 1--1 821
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X m
ff Ay le dx dy + fz Ay (%, 2y (%, 0) dx
0

i=1 1=1

Y m
¥ f}: Aui (0, y) 2, (0, y)dy = HZ i dx dy
o 7! i=1
X
m 2
+ f Z O, (x, alx, 0), v )Aui (x, 0) dx
A 1=1 Bui
Y .
H b 3 2
+ J“Z o, (y, a(0, v) V)Aui(O, y) dy . (1.43)
o i=1 ouy

Taking into account Equations (1.41), (1.42), and (1.43) and the

fact that AI = 0, we find using the same method as during the proof
of Theorem 1 the formula for the increment of the functional

AS

fﬂH(X, v, p, v + Av) - H(x, vy, p, v)| dx dy
G

[H,(x, a(x, 0), v2 + Av®) - H,(x, q(x, 0), v%)|dx

vl)’dy -,
(1.44)

[ (x, v, p, v + A&v) ) OH (x, vy, p, V) Ap.
i
8pi Bpi
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f [BHX v, p + 0Ap, v + Av)
k=1 op; 9Py

, ,
9°H(x, y, p + 0,4p, v + Av) )
- y. P 1 Ap-lApk‘dX dy

apiapk

24 Aavh)

X
if sz 9H, (x, q(x, 0), v
2% 4 99;
1=1
2
oH,(x, q(x, 0), v7)
9qi

} Aqi (x, 0)

ELes [BZH (x, q(x, 0) 1 8,Aq, v’ + Av?)
+ Z 2 2
qu qu
8°H,(x, q(x, 0) + 9,Aq, v¢ + Av?)

) |
8q; 84 Aq‘Aqkfdx ’

Y. m
n, %fz HGH y, a(0, y), v+ Av)
0

=1 oq;

[

aH ’ y 0) H Vl
_ 9H,(y, g, (0, y) )] Aq; (0, y)
99i

2m

8°H,(y, q(0, y) + 8,Aq, v + Av')
aqiaqk

Ag; Aqk (1.44")

9°H (v, 4(0, y) + 0,aq, v' + Avl)]
aqi aqk

Liet us now estimate the residual term n in the formula (1. 44).
The magnitudes n_ and n/? / are defined by the values of the function
z and u on the boundary of the domain G. From Equations { 1. 36) and
the conditions (1. 37) we obtain because of the Lipschitz conditions
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m Y. m Y s

EIAzi(O, y)| < NfEIAzl(O, y)| dy + Pf lavi (v dy
1=} ABES! . 0 k=1

m X m X t

> lazi(x, 0) < NJZ|AZ1(X, 0)] ax + plf > lav tx)] dx
i1 0 i=1 0 =1

From this, according to the lemma mentioned before, it follows that

Y.
S
|Azi(0, y)| = Mofz |Av;(y)| dy ,
0 i=1

| Av.lz(x)l dx . (1.45)
1

t
1=

X
|Az, (x, 0)| < le
0
We introduce the notations

1Tl m T
G_(X, y) = Z |A21X| s [3 = Z'Azly' , Y = Z 'AZl| ,

i=1 i=1 i=1
r
av] = 2fan]. et = Flavim] [av]=30 fav el

Since the functions f; satisfy the Lipschitz conditions, then like in the
case of the derivation of inequalities (1.23), we obtain here

y n
al(x, y) < sza(x, y) dy + szlra(x, y) + Y(x, y)| dy
0 0

Y X
+ N3f Av(x, y) dy + N4f Avi(x) dx + N AvE(x)
0 0
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X g
B(x, y) < sz B(x, y) dx + sz’a(x, y) + Y(x, y)]|dx
0 0

Y

X
+ M3f Av(x, y)dx + M4f Avl(y) dy + MsAvl(y) ,
0 0

X

y
Y(x, y) < f a(x, y)dx , vy (x, y) = fB(X, y) dy ,
0

0

where

From this we find:

n Y
a(x, y) < NGflmX, y) + Y(x, y)|dy + NJ Av(x, y) dy
0 0

X
+ st Avi(x) dx + NyAvi(x) ,
0

3 X
B(x, y) = M6f|a(x, y) + Y(x, y)|dx + M7f Av(x, y) dx
0 0

+ M Avi(y) dy + MeAvi(y)

8

O S

Taking into account the estimates for the function vy, we find .

N Y
alx, y) £ N _ fg(x, y) dy + N7fAv(x, y) dy
0

X
+ st AvE(x) dx + N AV (x)
v

30
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£ X
B(x, v) =My, fn(x, y) dx + M.,f Av(x, y) dx
0

Y

+ MSIAVI(Y) dy + M,Av'(y)
0

()
From these inequalities we obtain

n

0

£ XY
a(f, n) = N“ff a(x, y) dxdy + leff Av(x, y) dx dy
0 0 0

&+
qZ

Y, b
Av (&, y)dy + Nl3f avi(y) dy + st AvE(x) dx
0

0
2,
+ Nyavi(z)

b

n & X Y
R(&, M) = My, ff B(x, y) dx dy + Ml?_f Av(x, y)dx dy
0 0 0

0

Y X
Av(x, m)dx + M, fAvl(y) dy + 1\./113f AvZ(x) dx
0 0

7

+
<
e

1
+ MgAvi(n) .

Integrating the first of these inequalities over € between the limits
of 0 and £ and applying the above mentioned lemma, we find

¢ Y
\ sfa(g, n) d¢ < N, ffAv(x, y) dx dy + lefAvl(y) dy
G

0 0

X
+ N fAVZ(X) dx

160

In an analogous manner, from the second inequality we obtain
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X

.
fﬁ(ﬁ, n) dn = MMffAV(X, y) dx dy + M, fAvZ(X) dx
0 G

0

Y
+M,, f Avi(y) dy

0

From this and the inequalities (*), we find

Y X
|Az (x, y)| < N14”Av ) dx dy + N fAvl(y) dy +N16fAv2(x) dx,
0
Y
|A 2z (x, v)| = N”f Av(x,y) dxdy + lef Av(x, y) dy
G 0
X Y
2
+ ngf Avidx + NzofAvldy + NoAvi(x)
0 0
X
|Aziy(x, y)| < M”ffAv(x, y) dx dy + Mlsf Av (x, y) dx
G 0
Y X
+ le;f Avldy + I\/;ZO'/'A\:de + I\/JgAvl(y) . (1.46)
0 0
In an analogous manner we get
|[Aui(x, y)| < f Av{x, y)dxdy + I\AzzfAv ) dy +M23fAV (x)dx .
(1.47)

If Av;(y) = Av¥ix) = 0 , while Av. (x, y) £ 0, then from (!.46)
i i

and (1.47) we obtain the inequalities (1.27) and (1.29). After establishing
this fact, we go over directly to the proof of the theorem.,

Let for the sake of definiteness the permissible control w(x, y) =
(v (x, y), vl(y), vz(x)) be min-optimal according to S. Then during an
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arbitrary Aw the inequality AS = 0 is valid. Let us assume that the
theorem is not true. Then within the closed domain G one can indicate
either a surface domain G, within which the first equality (1. 39) is not
fulfilled, or a segment of a straight line located on the boundary of G
over which one of the two last equalities (1. 39) is not satisfied.

In the first of these cases one can find the permissible control
v € V such that

H(X7 Y» p(X’ Y), '\7‘) - H(X’ Y: p(X! Y)’ V) > O fOI‘ (X: Y) C Gl

Then there exists a 6 > 0 such that

~

H{x, v, p(x, y), V) - H(x, v, p(x, y), v) > &

for (x, y) € G€ C G, , where G, - a circle of radius ¢ located
adjoining the boundary in the interior of the domain G;. Putting

Av' = Av? = 0and repeating the same reasoning as the one carried
during the proof of Theorem 1, we obtain by means of the estimates
(1.46) and (1.47) that AS < 0. However, this contradicts the condition
and indicates that the first equality is satisfied under the conditions

of maximum.

Let us investigate the second case. For definiteness we assume
that the last equation (1. 32) is not satisfied. There exists then a
control ¥2 € V% and a segment 1 of the y = 0 boundary of the domain
G such that

H, (x, q(x, 0), ¥2) - 1, (x, q(x, 0), v*) > 0

for x € 1. Consequently, one can specify a number & > 0 such that
H, (x, q(x, 0), '\72) - H, (%, q, (x, 0) vz) > §

for x € L C 1, where 1_is a segment of length €. Let us put

Avi :Avil =0

and study the auxiliary control
o (%, y) = (v, v, T,

where
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v for x € le
~2
ve o for x € 1,

Then the residual term N in Equation (1. 44) coincides with T]Z (see
Equation (1. 44')) where

) 2
Ave = T2 - v

and consequently, Av? differs from zero only for x € 1

Since the function BHZ/qu satisfies the Lifschitz conditions and
BZHZ/ququ are bounded, then because of the estimates (1.45) and
(1.47) we obtain

t 2
Il < Me f(z |Avk2<x)|) ax

le
where M is a constant independent on €. By means of this estimate
we can casily establish that AS > 0 and this contradicts the assumption
about the min-optimality according to S of the control w(x, vy).

Theorem 3 is thus fully proved,

Let now the control process be described by the system of linear
equations

m
ZixY = RZ:I lcik (x, v) Zpy T dik(x’ y) Zky + gik(x, V) zp |t fi(v)

i=1,...,m, (1.48)

with the additional conditions

m
1
ziy (0, y) = Z Cik (05 y) 2 + T(v7)
k=
m
2 (6 0) = D dy Gk, 0) zy (x, 0) F g (vE)
k=1
2 (0, 0) = 2z,° i= 1, , m (1.50)
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The special choice of the coefficients in systems (1.49) follows
from the requirements (1.38). Like during the proof of Theorem 2,
we find that in the case under investigation the residual term 1 in
formula (1.45) is equal to zero and, consequently,

AS = - ff[H(x, y, P, v+ Av) - H{x, y, p, v)| dx dy
G
X
2 2 2

- f[Hz(X’ q, v& + AvVT) - Hz(x, q, v )l dx
0
Y

- f [Hl (v, q, vi o+ Avl) - H, (y, q, Vl)]dy .
0

From this formula follows the validity of the following theorem.

THEOREM 4. TFor a permissible control w(x, y) in the boundary
problem (1.48)-(1.49)-(1.50) to be locally min-optimal (max-optimal)
according to the functional S = e Ajz; (X, Y) it is necessary and
sufficient that it satisfies the conditions of maximum (minimum).
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Section Il. OTHER PROBL EMS OF OPTIMUM CONTROL
FOR HYPERBOLIC SYSTEMS

We investigate the same problem concerning the minimization of
the functional S = ZAiZi (X, Y) in which the control process is described
by the boundary problem (1. 1)-(1. 36)-(1.37) where Z(i) ,1=1, ..., m
are given numbers. The permissible controls defined in Section I are
omitted by the requirement that the respective numbers zi (X, Y) belong
to a convex set D of the space of the variables z;, ..., zpy. In this
manner, in the problem under investigation, the permissible controls
transfer by means of Equations (1.1) and (1.36) the point (9, oo z)
into points of region D. In what follows, we will assume that the convex
region D contains internal points and that it is closed.

For the solution of the problem like in the paper by Rozopoer16 we
introduce the function

A{z) = (A, =) = ZAiZi
and denote by D* the set of points z* € D* at which

A{z*) = min A (z)
z€ D

If the set D¥ is not empty, then

A (z7) €A (z), zv€ D=, z€ D,

and, consequently, the functional

S :ZAlzl (X, Y) y

defined over the solutions of the boundary problem (1.1)-(1.36)-(1.37)
cannot take values smaller than A(z%). If there exists a permissible
control which transfers the point z9 into an arbitrary point of the set
D%, then such a control is a min-optimal according to S. In such a
case, the problem reduces to the calculation of controls transferring
z9% into a given domain., Such a problem will not be investigated in
what follows, i.e., we assume that there are no permissible controls
transferring z? into D,
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1.  The Necessary Optimality Conditions

We will say that the permissible control w(x, y) satisfies the
maximum condition relative to the given function u(x, y) if the condi-
tions (1.39) are satisfied, where z(x, y)is the solution of the boundary
problem (1.1)-(1. 36)-(1. 37).

THEOREM 5. If w(x, y) is min-optimal control according to S and
z(%, y) - the corresponding solution of the problem (1.1)-(1.36)-(1.37),
thenthere exists a vector function u(x, y) relative to which the control
w(x, y) satisfies the maximum condition.

Let
1
w(x, y) = (vix, y), vi(y), vA(x)
be a min-optimal control according to S and z(x, y) - its corresponding

solution of the boundary problem (1.1)-(1.36)-(1.37). We denote by
D- (D+) that part of the domain D for which

A (z) S ZAzi(X, Y), z€D7(A(z) = T Ayzi(X, Y), z€DV)

The general part of these closed convex regions is the plane

m
CD A (z5 - z3(X, Y) =0
i=1

which contains the point z(X, Y). Since the control «(x, y)is the min-
optimal according to S, there do not exist permissible controls trans-

ferring the point z° into the domain D”. Noting this fact, we introduce
the variation of the control assuming that all the permissible controls

are sectionally continuous.

We choose arbitrary points

(Xi) YJ): i) _] z 0 (XO = 07 Yo = O) ’
in the domain G and denote by G;; the rectangle formed by the adjacent
points (xy, V) in which the corner of the lower left angle is represented

by the point (x;, yj). We establish the square

Lijs 44y - 7T S XS Xit1, yj41 - T Ty < yj41,
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where the number 7 is chosen so small that for the given set of points
(x1, yj) these squares do not have common points?.

We take an arbitrary sectionally continuous vector -functions
aij(x, y), Bij(x) and yj(y) defined for x, y€ [0, 1] and taking values in
the domains V, V%, and V', respectively, of the changes of the control
parameters v, v?‘, and v!. We introduce functions

vix, v) for (x, y) S
vp(x, v, aji) =

(Xi - % Yk-Y>

alk \ p 5 fOI‘ (X, Y)eli—l’ k-1 °
1 v' (y) for y€ [y - ™ yid
v vy, YK) =
Yk -V
Yk (———T——> for y€ [yx - 7 yk) .
) _
ve (%) for x C[Xi - T, Xi) o,
vi© (x, By) = ~
Xi - X
B; (—-_r—> for x C[xi - T, o%x5) .

The functions

1
wy (%, v, aik, By v = (vp (x50 vy, ai1), vt (s v,
vt (%, 81))

will be called the varied control, and Q will denote the totality of all
possible varied controls corresponding to all possible squares Iij and
all possible functions ajk, PB;, and yj of the above mentioned type. We
denote the solution of the boundary problem (1.1}-(1.36)-(1.37) corre-
sponding to the control wpy€ @ by z(x, y, wp). Then the function

AZ(X) Y: <"“')) = Z(X5 Y, wb) = Z(Xy Y: (.0)

is the solution of the boundary problem

oH
Azixylx, vy, @) = A=—, (x, y) €G, (2.1)
1

*In the case when the number of points (Xi’ yj) is finite, there are
no doubts concerning the existence of such a =
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9H,

Aziy(O, y,w) = Am— , YE IO, YI, Az (x, 0,w)
i
(2.2)
oH,
:Aaui ) XC'O,X],
z; (0,0,w)=0; i=1, ..., m. (2.3)

Since Equations (2.2) are ordinary differential equations, then, accord-
ing to results of the paper by Rozopoer16 it follows from (2.2) and (2. 3)
that:

LI e (200, yie), )
_ Qi VAR y VW), w
623 (0, y,0) = 3 AL2E 52, (0,y,w)dy
0 k=1

+Z Ri[Yj’le v YR SV Vit

where
* m
0
ézi(x,O,w):fZ (= Z(X )2 9) 6o (x, 0, w)dx
o k=1
&
. ~ | ~ 1 . .
+LJ ullxj,pJJ, XZ<X< Xl+l,
j=1
5z, = lim —21
1 T
T—-»O

1
Ri[yj,vj]:f [@4(yi> 200, y5: ¥1) vj(90) - 03y 20, v, vh), vi(y))]dy,

1
Qi(xj’ BJ) :‘/‘[L-L'i(xj’ Z(Xjr 0, Vz)r BJ(X))
0

- qu(x ,z(x J,O,VZ), VZ(X))]dX
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It was shown in the same paper that

(x,0, w)~22 A (x, X )Q (Xj,wb),

J=1 s=1

k m
82.(0, y, ) —Z D Biglys YR (vep):
j=1 s=1

(2.4)

where the matrices A;  and B,  do not depend on the choice of the func-
tions ‘Bi and V..

From the relationships (2. 1) it follows that

Azi(x, y,w) = Azi(x, 0,w)+ Azi(O, y,w)

X

3im I k
ofi(x, vy, w, v)
+/].SE 1 T Aw dxdy +jzl VE Iijv [‘*’b] (2.5)
00 - = =1

+ Ei’ (<, Y)CGZ,k -1

I,k

Here we introduce the following notation:

1Jk f f (x,v,w, Wk v vidy dx,

-T yk_

3m
1 9° fi(x, vy, w+ 04w, vy)
E;= ? E -/:f BWSBWq AWSAwqdy dx

1

q:
k X4 Yu 3im
OF(x, vy, w,aiy, V)
S5 I D yELCHIE I PN

{
j:1 V:].Xj_-r YV_T s=1

where

T T

. Xy - X Yv - Y
FI(X YW, aJV’ v) = f1<X, Y W’ajv < J ))_ fi(x’ Y, W, v).
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In an analogous manner we find that

d R of:{x W, V)
Az (x,y,w)_Azlx(x,O,w)-l—f E 1 8’\3]’ ’ Aw dy
0 5=1 s
(2.6)
k
+ Z Elv ’wbi+ El’
v=1
QO (x, v, W, v)
< , - A X , , 1 ’ ) ’ A
Az (%, 70) = Azgy(0 yw)+of Z:l — W dx
(2.7)
l —
+ X Fij o+ Fy
J=1

with (x, y)€Gy, k - I,

where
0 forxl<x<xl+l—‘r,
£, =07
ip .
Fi(x,y,w,al,p,v) dy for Xpp, " T < x < Xyy1o
YP-T
( 0 for Ve €V < Yig, =
<
F..=
1)
/ F(x,y,w,ajk, v)dx for yk+l—-rS V< Vit 10
Xj_T

3m 5
1 0f:(x,y, w+ 04w, vp)
Lz — 1 Aw _Aw_d
J f Z dwgdwg WesBWqay

_ for x, < x< x -7,
Ei:< l l+1
k Yp  3m
oF.(x,v,w,a ,
Ji + Z: _[ 0V, o) Awgay
p:]. Yp—T s=1 8VVS
\ St <
for X0, " T X<X7+1,
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( 3m X
L

2
. A
Q= 1 E f 9 fl(X’y’W+e W, Vb) Aw_Aw_dx
2 awsawq S q
s,q=1 0
Fi:< for yi e <y <yp,, - T
l * 3Mm 5F
L. + E E 106 Y, W35, V) Ay gy
1 HWS ]
\ j=1 xJ—-r S=1

for yyp ) -7 < y< Vg4, -

According to what was proved earlier (see unequalities (1. 46)) one
can specify a positive number N such that

|Aw~l(x,y)| < N7,

and consequently,

E;| < Nyt |E{| = Nov° |F,| < Na7?
and uniformly over x and y
lim L - lim—/% = 1lim L -0,
T T T

T—0 T 0 T-= 0
Introducing the substitutions

E7= x5 - X, T =yy -y

and going over to the limit we obtain

1 1
. 15
lep [XJ; YP;wb] = lim TJP = ff ifl(x_]’ Yp: \V(XJ" Yp)’ O«Jp(ﬁyn))
T 0 0 O
- f(x-: . ¢
G50 0 Wi, yp)v)| dfdn.

One can show that the totality of Equations (2.5), (2.6), and (2.7)
is solvable and for all (x,y) not located on the lattice x = X5 and y =y,
there exist limits
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lim = 621’

T—0 T
. Az (%, y,0) . Az (x,vy,w)
lim LX - = bziy, lim 1y _ =8z,
T 0 T—»0

where
b6z, .

6Z- :_a_iL , 62. = 8621

1X o x 1y - ay

Dividing these equations by T going over to the limit for = — 0,
we find:

6Zi(X! Y»w) = 6Zi(xx O;w) + 621(0, y,(.o)

X
3
- Afi{x, y, w,v)
&
+ff Swq wgdx dy

3

S
! k
PIDIRLEE
=1 p=1 >  (2.38)

Iwg

y
6z, (%, y,w) = bz;,(x,0, w)+f Z fi(x, y, w, v) dw _dy,
0 sc=1

x

Z3m of:(x, y,w, V)
6Ziy(x’ y:w):6ziy(0y Y,w)+f L a\Vs ! 6\Nst
3} s=1

for
Xp <X <Xpay =X, Yk<Y<Yk+1:Y°

From the way the functions 6z;(x,0, w) and 6z;(0, y, w) were defined
it follows that
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6zi(x,0,w) = 8z;(0,y,w) - O
for
0= x<x, 0= y=ym,
and, conscquently, from (2.8) it follows that
6zi(x, y,w) = 8zi5(x,y,w) = <5zo1 (x,y,w)= 0
for
0 < x<x3, 05 y<y.

Further, from the rclationship (2.4) and (2. 8) we obtain

m Xy 3im
§ : f:
6zi(x, y,w) - A (%, x1) Qglxiwp) ff Bfi(x, y, w, v) 6ws(]ydx,
Ow
S:-1 X1 © S-1 s
m Yy
31
of:(x,y,w, Vv
bz {x,y, ) = § : Ao (x,x) Qg (xiwp) F/. 2 ; ! 8\:// ! dwdy,
s
§-1 o s 1
X 3m
afi(x,y, w, V)
67" (X: 1(‘0) :f L 6\f\/ d)(
ry Y 2 : Iwg S
X1 Szl

for
x1< x< %z, 0< y<yyp .
Solving this system, for instance, by the mcethod of successive approxi-

mations, we find that the function f)z.1 may be represented in the form

6zi(x, y, w E Al (%, 7, x1) Qglx1,wp), x1< x < xg, 0Osy<vy ,
s =1

where Al-lS (x,vy,x1) is the fully defined function not depending on the
choice of the functions aij, Bi, and Y- Continuing these deliberations,
we define
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s=1 j=1
(2.9)
0= y<vy, X1<XSXZ+1-X
We find in an analogous way that
m k
6z;(x, y,w) = E | E BFS (x, v, yp) Rs(yp,wb),
s=1 p=1
(2.10)

0 € x € xy, yk<y$yk+1:Y.

From these relationships it follows in particular that

!
6z.1(xl+ 0,y,w) - dz; (x; - 0,y,w) :Z ’Ais(xl + 0, y,xl)Qs(xl,wl)

S=1

-1
- AT g = 00y xg ) Qg o)

Z' K
6zi(x, Vi + 0,0) - 6zi(x, Vi - 0,w) = lB is(x, Vk + 0, yr)R (V@ b)
s=1
1'_
-BE Y (%, vy - 0,y )R {Viops wb)|.
Consequently, functions 6z;{x,y,wj which are dcfined by the formulas
(2.9) and (2.10) are generally speaking discontinuous along the lines

x=x1 and y = Vi

Continuing analogous deliberations, we get

m ] k
52 (x, y, w) E E E lCIJpS X, ¥ Xjs Yp) S (Xerp’wb)

s=1 j=1 p=-1

+ Dy (x, Y5 %;) QS(Xj,wb)+ Fisp(x, s YpIRs(yp,9b)
xl<x$xl+1:X, yk<yéyk+1:Y.

Substituting in this equality x = X, and y = Y, we obtain finally
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m l k
82.(X, Y, w) =Z Z Z lcijps(xj’yb) S (xjyp,wb)

(2.11)
+ D) (x5) Qg (xj,0p) + FE () R (yp,wb)]
where the constants C.. , D’ , and FP do not depend on the choice
ijps is is

of aijs f;» and Y-

The point

z(X, Y)+ 0z(X, Y, w)

corresponding to the arbitrary variation w, € Q of the control w goes
over a certain set II within the space of the variables z;, ..., zmpy. In
the same manner as it was done in the paper by Rozopoer16 one can show
that it is convex and that its arbitrary internal point cannot belong to

the internal part of the set D . It follows from this that through the
point z(X, Y) one can draw the plane

m

Z aj(z; - z; (X,Y))= 0, (2.12)

1 =1

dividing the sets II and D where the signs of the coefficients a; may be
chosen in such a way the II is ir the half-space

2 a.l(zi - zi(X,Y)) = 0.
1=1

Consequently, for an arbitrary wy

E a;6z;(X, Y,w) 20,

i.e.,

Ta.Az (X, Y,w)

lim = 0.
T

T

ucc auxiliary functions uy by means of Equations (1. 5)

i Al
introd
and additional conditons
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9H(x, Y, p(x, Y), v)

uix(X’Y): - Bziy ’
(2.13)
OH (X, v, p(X, v), v)
ui (Xs Y) == ( ay p( Y) N u(X,Y) = - i
y Zix 1

Using the same method which we applied above, we can obtain a formula
for the increment of the functional

S =Za;z(X,Y)

in the form (1. 44) and, consequently, the same method may be used to
show that the conditions of the maximum (1. 39) are necessary in order
that the permissible control w(x, y) realizes the minimum of the functional
S. However, S attains its minimum over the min-optimal control
according to S.

Theorem 5 is thus fully proved.

It is obvious that the statement just proved remains valid even in
the case when the control process is described by the boundary problem

(1.1)-(1.2).

If the control process is described by a linear boundary problem
(1.48)-(1.49)-(1.50), then one encounters as valid

-+

THEO Vv (
(1.48)-(1 (1.50), cor p nding to the control w(x,vy) and satisfying
the condltlon z(X,Y) = zl. Then, if w(x,y) satisfies the condition of

maximum (minimum) relative to the functions u;(x, y) taking the boun-

dary values

6. Le

-~

be the solution of the boundary problem

-

L\.EJ.
49)-

u(X,Y) = -NA; - pBy(z'), =0, \>0,

where B.(z!) are the coordinates of the normal, perpendicular to the D

hyperplane, thenthe control w(x,y) is min-optimal according to the
functional

m
S = E Az (X,Y).

1 =1

The proof of this theorem agrees almost completely with the proof
of the corresponding theorem (see Theorem 4 in the paper by Rozopoer16
for ordinary differential equations.
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2.  The Use of Theorem 5 for the Solution of Certain Specific Problems

The result just obtained does not, generally speaking, present
a method for the establishment of the vector u(x,y). However, in num-
erous particular cases this problem may be solved. Let us study some
of these.

1) The point z(X,Y) is located within the domain D. Then
a; = Aj, since an arbitrary plane in addition to the plane
(2.12) crossing the point z(X, Y) cuts the region D and,
consequently, cannot separate D and II.

2) The point z{X,Y) belongs to the boundary of the domain D
which is specified by the inequality F(z)< 0. Then the
boundary is specified by the equation F(z) = 0. If the
function F(z) is differentiable, then the equation of the
tangential plane through the point 2(X, Y) has the form:

m
Z Bi(zj - zi(X,Y)) - 0, Bj=

i=1

aF
82i

]Z———Z(X, Y)
Since the plane
Zai(zi - Zi(X’ Y)) =0
likewise crosses the point z(X,Y), then
where, without a loss of generality, onc can assume that
- 2 2
A 0, L= 0N+ ptF 0).

Since aj is determined with accuracy up to a constant multiplier, then
only one of the quantities N\ and [ is independent. Since, according to
the conditions of (2. 13), ui(X, Y) - a, and F(z(X,Y)) = 0, we obtain

m + 1 rclationships

Ui(X, Y) = -)\Al - HB

o F(z(X,Y))=0, i=1, ..., m, (2.14)
for the determination of ui(X, Y) and of the quantities X\ or . Adding

to (2. 14) the conditions (1.37), we obtain 2m boundary conditions for

the 2m functions z;, ..., Zy U1, .., U These conditions, together
with Equations {1.1), (1.5}, (1.36), (1.39), and (2.13), form a
“"complete'' system of relationships for the determination of the optimum
control and the corresponding vector functions z(x, y) and u(x, y).
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Suppose that we are required to determine the minimum of the
functional

XY
I:ff fo(x,y,z,zx,zy,v) dy dx
00

under conditions that the function z(x,y) is the solution of the boundary
problem (1.1)-(1.2), while the point z(X, Y) belongs to a certain convex
domain D of the space of variables zy, ..., z,,. By introducing an
auxiliary function z, through the relationships (1.4), we reduce the
problem to the calculation of the minimum, .. [Apparently one line is
missing, Note of the Translator|... enters into the cylinder having a
generatrix parallel to the axis z,. Since the variable zy does not enter
into the right-hand side of Equations (1.1) and (1.4), we find that Bg = 0
in the relationships (2. 14). For the functional under investigation,

Ay =... = Ay =0, Ag =1, which means that it follows from (1. 5} and
(1. 6) that ug({x,y) = -1. In this manner, differential equations and
boundary conditions of the problem under investigation take the form
of the relationships

oH
ZiXy :—8—1,]: ’ Zi(o’ Y)ZiDl(Y)’ Z.l(X,O): Ll)i(X),
u oH d (BH ) d ( oH ) (%, Y) oH
3 = - - ’ u. X, - - ’
Xy  9z4 dx \dz; dy Bziy 1X BZiY yoY
oH
U‘iy(X’y) Rl , u,l(X,Y) =0, H = E uifi - fo,
M x=X 1=1
from which the auxiliary Equations (1.4) are excluded.
3.  Generalization to the Case of an Arbitrary Number of Independent Variables

The formula for the increment of the functional S and the
ensuring consequences may be generalized for the case when the control
process is described by the Goursat problem with an arbitrary number

8

of independent variables'®., Nevertheless, to avoid a cluttering of the

formulas with irrelevant details, we assume that the number of inde-
pendent variables is cqual to three.

Thus let the functions
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zi(x), x = (x1,X2,%X3), 1=1, ..., m,

be specified through the relations

83zi 9z 9z azZrn
0X10X,0X3 fi(x’zl’ ceeo Zme oxy; = 77 08xs 7T 9x,0x%3” v
(2.15)
i=1, ..., m, 0= x s X, k-1,2,3,
and the additional conditions
zi(O, Xz,X3) = (pil (Xz,X3), Z:L(XI,O,X3): ch? (Xl,X3),
(2.16)

3
zi(xl’XZ’ 0) :CDi (XlaXZ),

where the functions f.1 contain mixed derivatives of the z;j variables of
an order not exceeding two. These functions are twice continuously
differentiable over the totality of all arguments. The control para-
meter obeys the same conditions as before. The functions ; are
twice, sectionally, continuously, differentiable over their arguments
and satisfy the natural matching conditions. Like in the previous cases
we will assume that each permissible control has an associated class

of functions within which the Goursat boundary problem can be uniquely
solved.

As the criterion of optimality we chose the functional

m

S - .S. Az (X1, Xz, X3), (2.17)

1=1

We introduce auxiliary variables u; and the function

m
H(x, w, v) = E u.f.,
i1
1-1
where
W= e . u Z1 P A —_—_ e ey ———————
bd 1 In’ b ? n’l’ 8Xl ’ ? 8X3 L ’ 8X28X3

is a vector with a number of components equal to N. The function
u,(x) is defined by means of the cquations
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3

3 3 2
®ui  8H 9 BH \ 1 Z 9 9H
9x10x,0x3 0z, Z Oxk \Oz: 2 9x:0x) \0z. ’
k= Xk ik XXk

(2.18)
i=1, ..., m,

and the auxiliary conditions

2.
vy _ OH . ] ( oH )+ oH /aH ) for x; = X3,

9x19x%3 aziXZ 0x1 azixle 0x%; \8ziX2X3

9%y H oH o9H
. S 9 + 9 + 8 for x,= X;, (2.19)
9x10x3 BziXZ 9xy azix1x2 9%3 \ 92ix,x,

8%, 9H oH ) 9
249 .. + 9 + / H for x; = Xy,

9x209%3 azixl 9%z \9zix,x, 0x3 \azixlx;»,

du; H

gi = 0 for Xp = Xg N X3 = X3;

8X1 Z.

1X3X)

du; oH

e for xs = Xs, x = Xy, (2.20)
Ox2 0Zjiyx;x3

Ouj = oH for x3 = Xi, X, = Xy,

8X3 8ZiX1XZ

ui(Xy, Xz, X3) = - Ay, i=1, ..., m. (2.21)

Equations (2.20) are ordinary differential equations. Conscquently,
for cach permissible control, they determine together with the conditions
of (2.21) uniquely the functions u;(x1, Xz, X3), ui(Xi, xz, X3), and u;(Xy, Xz,
x3). We now solve Equations (2.19) with the additional conditions

u.(xq, %2, X3)| x1 = X1 = 4y(X1, x2, X3), I
s for X3 = X3;
u; (%1, X2, X3)I x2 = Xz = uy(x1, Xz, X3),

ailxi, Xz x3)| 31 = Xi = uy(Xa, Xz, x3),

‘ for x, = X;,;
up(x1, Xz, x3)| x3 = X3 = uy(x1, X,, X3),

ui(Xy, x2,%3)] %2 = X = uy(X1, X, x3),

for x; = Xj.
ui(XerZ:X:‘l)l X3 = X3 = ui(leX27 X3)1
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Because of the assumptions made above, the functions uj(x, %2,X3),
uj (x, X3, x3), and uj(X), x;, x3) arc uniquely determined. In this manner,
the problem is in the last resort reduced to the Goursat problem: to
find the solution of the system of Equations (2. 18) within the domain

< xi € X, satisfying the boundary conditions

ui(xy, X2, X3) | %2 =X, =ui(x1, Xz, x3) ,
ui(xly X2, X3) IX3:X3:ui(X17 X2, X}) ’ (2. 22)

ui{xy, xz, x3) |3 =Xy =ui(Xy, %2, x3) , 1=12, ..., m.

At the same time, one must kcep in mind that the functions
aH/awk within the Equations (2. 18) and (2. 19) are differentiated over
%y, %2, and x3. This means that if one assumes that the class of per-
missible controls consists of scctionally-continuous functions, the
following conditions must nccessarily be satisfied: the right-hand
side of these equations should not depend on the derivative functions

v and on zy y ., and zyx,x,. If the right-hand side of Equations

25Xy
(2.18) and (2. 19) do depend on thesce quantities, then one must choose
the functions v(x) having scctionally continuous derivatives for the

class of permissible controls.

Assuming that these conditions arc satisfied, one can obtain
the formula for the increment of the functional

X1X; X5
AS = —fff lH(x, w, v+ Av) -H (x, w, v), dxsdx,dx; —-n

0 0 0
using the same method as presented above, with

n=mt+mnz,
X1 X, X3

8H s y A H s >
= E fff (x, w, v +Av) B8H(x w V)J Awidxsdx,dx;
i owi

Wi
i=1 0 00

X, X, X5
fff [ 92H(x, w+0,Aw, v+AV)
Nz =—§ :
i,k=10 0 dWid Wk

102H (%, w+0Aw, v +AvV)

] Awi Awk dx;dx, dx;
OWid Wk
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From this formula one can derive the optimality conditions
which may be formulated in the form of Theorems 1 and 2. 1If one
assumes that the control is carried out by means of boundary con-

ditions, one can obtain results which are analogous to Theorems
3 and 4.

4.  The Control of a Process by Means of ‘‘Concentrated Controls"’

We assumed, in all the problems investigated above, that
all the components of the vector v(x, y) are functions of two variables:
x and y. However, the proposed method permits the solution of a
problem where all the permissible controls v(x, y) may be presented
in the form

vi(x,y) = (v (x), vi(x,vy), v3(y))

{some components of this vector are functions of only a single inde-
pendent variable x or vy).

For definiteness, we investigate the problem of the minimization
of the functional (1. 3) when the process is described by the boundary
condition (1. 1)-(1. 2). The formula for the increment of the functional
(1.21) remains valid even in this case. Valid is also the estimate
(1.29) of the residual term of this formula. Consequently, the same
method proves also

THEOREM 1'. For the permissible control v(x, y) =(v!(x),
vZ(x,vy), v3(y)) in the boundary problem (1. 1)-(1l.2) to be min-optimal
according to the functional (1. 3), it is necessary that the condition

ff[H(X, Y, p(x,y), vix, y)+Av) -H(x v, p(xy), vix, y)} dxdy<0

be satisfied for an arbitrary permissible increment Av, where p(x, y)
is a vector corresponding to the control v(x, y) and which is fixed by
Equations (1. 1), (1.5), and the additional conditions (1. 2) and (1. 6).

If in particular the permissible control depends only on a single
variable (for instance, on x) and in Equations (1. 1) we have

fi(x,y, z, zx, 2y, V) =15(x, ¥, 2, Zx, zy) +fi1 (%, v),

then the conditions (2. 23) take the form
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ffz ui (%, y)| fi (%, v(x) +Av) = £} (x, v)] dxdy <

i=1

By introducing the notation

H' (x, u(x ZfXV)f (%, y)dy ,

1=1
we obtain the optimality condition in the following form.

THEOREM 1", For the permissible control v(x) of the boundary
problem (1. 1)-(1.2) to be min-optimal (among controls depending only
on x) according to the functional (1. 3), it is necessary that

H! (x, u(x), v(x)) (=) sup H'(x, u(x), v),
veEV

where the symbol (=) indicates equality valid for almost all x's of

the segment < x< X,
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Section IiIl. THE YARIATIONAL CALCULUS AND THE PROBLEMS
OF OPTIMUM CONTROL

The problems investigated in the present paper represent in essence
problems of variational calculus. However, the classical methods can
not be applied here since the control parameters may, in general, take
values from a closed domain. In the case when the region of variation
of the control parameters is open, one obtains from the principle of
maximum the necessary conditions of the classical variational calculus
for functionals with partial derivatives.

Let us search for the minimum of the functional

XY
I :fff(x, Vs 2, Zxs Zy, v) dy dx,
0 0

which is defined over the functions z =(z,, ..., zp,) specified by the
relationships

Zixy (xs V) = vy v =Avy oo vm)s o 2i{0, y) = qily),

z; (x, 0) Uy (%), i=1, ..., m,
where the control parameter v is chosen from the class of all sectionally
continuous vector functions.

Under the optimum control we understand the permissiblie controls
found within the immediate vicinity of the function z (x, y) corresponding
to such a.control. It is obvious that such a definition of the optimum
control is a special case of the optimum control in the previous sense.
Consequently, the principle of maximum remains valid and every opti-
mum solution is also an extremal solution. The opposite is also valid:
each extremal constitutes an optimum solution.

For the calculation of such a solution we introduce an auxiliary
variable z,:

Zoxy = £(x, ¥, 2, 2xs 2y, V), zo(x, 0) =2,(0, y) =0,

and establish the function H:

H = u,f + 2 UpVp-
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Then the auxiliary functions uj(x, y) are defined by means of the
boundary problem

S SOOI T S AL T
1XYhazi Yo T ix 0Zix 0 dy aziy o)’ }

I

iy (x, Y)

of B of
) [aziy uo]y = Y’ uly(X, Vs [azix uOL = X,

u; (X, Y) =0, i=1, ..., m, ug{x, y) = - L.

r(3. 1)

From this we find that
H = Z U-pr - f.

Since the function H reaches its maximum on the optimum control
vi(x, v), we have

oH - of -
(57) ) (“i ‘a—vf) o
v o= vix, y) v = vix, y)

Consequently,

o dar (ot
Hixy T gx dy 0zixy

and because of Equation (3. 1), we find that the solution z(x, y) of the
optimum problem under consideration satisfies the system of equatio
by Ostrogradskiy-Euler (see, for instance, paper by Akhiyezer3?

p. 122):

of d  af d (oef) & of \ _
0z; dx \dz;) ~dy dzjy dxdy \0dzixy )

ns

As assumed earlier, the function f has a second continuous deriva-

tive with respect to the variables v,, ..., v,. Since the control
v{x, y) realizes the maximum of the function H, the quadratic form
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m m

9°H _ 0%f .
Z dviovy MikoT Z dvi 0vy Mk

1, k=1 i, k=1

is nonpositive. Consequently, from the condition of the maximum
(1.7), it follows that cverywhere within the domain G(0 =x =X, 0 =
y =Y), except, perhaps, in points located on a finite number of lines
with zero area, the inequality (L.egendre condition)

m azf 3 , L, Z y Ly Dy I
Z: (x, vy X1 “y ‘\Y) )\i)\K:/)O, Z )\il*o ’ (3.2)
i,k =) 9Vvidvk 1=1

representing the necessary condition for the function z (x, y) to be
extremal minimizing the functional I, is satisfied.

In the case when the domain of variation of the control parameter
is closed, the derivatives dH/dv; can not become zero along the optimum
trajectory z(x, y) and, consequently, the condition (3. 2) may even not
be satisfied. As a confirmation of what was just said we investigate
the simplest case.

Let the control process be described by the boundary problem
Zyy = V3 z(x, 0) =2(0, y) =0, 0Sx, y=l,

where v - the control parametier, {v| 1. As a criterion of optimality
we use the functional

11

S = —ff‘zxydxdy =-z(l, 1) (f(x, vy, z, 2\ 2y, v) = - vo).

0 0

It is easy to show that the min-optimal control according to S is
v(x, y) =1, and consequently, during this control

0%

39z <O

and the condition (3. 2) is not satisfied.
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Section V. OPTIMUM PROCESSES IN SYSTEMS WHOSE BEHAVIOR
IS DESCRIBED BY PARABOLIC EQUATIONS

1. The Formulation of the Problem. The Maximum Principle

Let E™ be a euclidian space of vectors x = (x,, ..., x,) and
G - a bounded region within E" with a boundary T" belonging to the class
Al2) (see work of Miranda33, p. 10), and X;(x) are the direction cosines
of the external normal on the boundary I

Let, furthermore, an elliptical operator L. = (L;, ..., L,,) be
defined within the domain G by the formula

. %y
- 2: z : ip __ P

p:lj,k:].

where the functions a{(xl, «+.., Xp) within the domain G + ' belong to
the class C(2). We dénote by M = (M,, ..., My,) the operator defined
by the formula

m n 3 n
Z
d pi p 0 pi
= —_ ja + — {1 =
i Z Z an(Jkan Zax (%) 150 oo m,
J
p:1 s k:I J:l
where
n pi
1P O 2k
j an :
k =1

One can check directly that the equation

m m
ip ayp
E [(ziLiy - yiMjz) dx = E E f E ajk (zi ﬁ
T

1 =1 G i,pzljzl




is valid. In the same manner, used before for an elliptical type equation,
we can trensform this formula into the form

m ” m
> f (ziLiy - yiMiz)dx =3, f ( 2iPiy - yiQiz)do , (4.2)
i=1 G i=1T
where
m ; dyp m pi
Piy =3, | atP — = + bipyp|. Qi* = | aN —— + dipZp|- (4.3)
p=1 p p=1 ip

In formulas (4. 3) the directions lip are chosen arbitrarily pro-
vided cos (n, lip) > 0 (n - external normal to ") and their direction
cosines belong to the class C Y on T'. The directions Nip are chosen
depending on the lip-

Liet us assume that the coefficients within the operator L depend,
in addition, on the variablet, 0 <t < T, and we investigate the control
systems whose behavior is cescribed by a system of equations of the
parabolic type

8 .
Lyy = f(t,x,y,yx,u), 0= t=T, x€G (Lity =3,z-,i - Liy), (4.4)
where the function f = (f;, ..., f;y) 1s continuous with respect to t

and is twice continuously differentiable over the other arguments, while
the parameter u takes the values within a certain convex (open or
closed) region U of the p-dimentfional euclidian space.

We assume further that the function y(t, x) = (y1, ..., Ym) 1is
defined by the system of equations (4. 4) satisfying, in addition, the
following conditions

Pi(t,x)y =qi (t,x,y,v), x€T, 0=t=s T,
(4.5)
y (0, x) =a(x), =x€G,

where the operators Pj are defined by the formulas (4. 3) in which the
functions ais(t, x), bip (t, x), and a(x) are continuous, ¢ satisfy the
same conditions as fj, while the parameter v takes its value from a
convex (open or closed) region V of a q-dimensional euclidian space.

The function w(t, x) = (u(t, x), v{(t, x)) will be called the per-

missible control if all its components are sectionally continuous and
u(t, x) and v(t, x) take values from the domains U and V, respectively.
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In addition, we will assume that the discontinuity surface of the per-
missible control I:Translator’s notc: one line seems to be missing.]

or in the vicinity of its arbitrary point one can introduce a non-
degenerate coordinate transformation

T =t, gizgi(t,x), i=1,...,n, .

since the discontinuity surface goes over into a portion of the plane

£,= 0.

If the discontinuities of a certain permissible control satisfy
the first condition, then the boundary probalem (4. 4)-(4. 5) corresponding
to this control splits into several such problems located, however, in
regions adjoining one another along the discontinuity surfaces of the
control. In such a case the problem (4. 4)-(4. 5) has a unique continuous
solution (sce, for instance, work by Zagoriskiy 34), and this solution is
not subjected to any further additional smoothness condition over the
discontinuity surfaces of the control.

If these surfaces satisfy the sccond condition, then one views
as the solution of the problem (4.4)-(4.5) the vector function y(t, x)
satisfying the system of equations (4. 4), the conditions (4. 5), and
certain smoothness conditions over the discontinuity surfaces of the
control. In its most general form, this problem apparently was never
studied although its particular casces were investigated in numerous
papers®? 30303834 yhich supply various existence and uniquencss
theorems concerning the solutions. Consequently, we will assume
everywhere in what follows that the given functions in (4. 4) and
conditions (4. 5), in addition to the above listed properties, satisfy
also the conditions under which to each permissible control there
corresponds a unique solution of the problem (4. 4)-(4. 5).

Let w(t, x) be a certain permissible control and y(t, x) the
corresponding solution of the problem (4. 4)-(4.5), and let be given
the functional

m T
S = | J ai (x)yi(T,x)ax + [ Bi(t x)yi(t, x)dxat
1=1 G 0 G

. (4. 6)

+jf v; (6 x)y; (t, x)do dt ,
o I

where aj, B;, and y; are given continuous functions.
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I.et us formulate the problem: among all the permissible controls
one should find a control w (t, x) (if it exists) such that the corresponding
solution of the problem (4. 4)-(4.5) realizes the minimum of the
Functional S.

The permissible control w (t, x) over which the functional S attains
its maximum (minimum) value will be called the max-optimal {min-
optimal) according to S. The functionals of a more general type will be
studied at the end of the paragraph.

As it was mentioned above, the problem of optimum control pro-
cesses described by parabolic equations are of definite theoretical
; 3 556511 . . .
and practical interest. Numerous papers investigated certain
problems for which the control is materialized by means of initial
and boundary conditions and for the optimality criterion one chooses
either the speed or the functional of the type

T

1
I:f [u(T,x) -uo(x)] de+yfp2(t)dt,
0

0

where u,y(x) is a given function from L, (0, 1), p(t) - control, and y -

a non-negative constant. We already investigated this problem for the
case when the control of the process could bHe materialized simultaneously
by means of controls entering into the equations as well as into the
boundary conditions. It is clear that the functional

m I 7 n Y1 5y:]
S :E ff[yi(t, x)y;i(t, x) +Z aik (t, x) + B; (t, x) — | dx dt,
1=1¢9 G k=3 OXK ot

with aik and Bi - continuously differentiable function can be reduced to
the form (4. 6).

To formulate the condition of optimality we introduce the auxiliary
function z(t, x) = (25, ..., Zm) by means of the boundary problem ''adjoint'
to (4. 4)-(4. 5):

m 8fs(t, X, ¥, Yxo u) o} d afs(t’X’ y’yX’U‘)
Mjiz = - Zs ~
s =1 Byt k =1 ka

_Zs

ayixk

+ Bi(t, %), xCG,
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where

Mjtz = oz

+ M;z,

are operators Q; defined by the relationships (4. 3), the functions aj,
Bi, and yj enter into the definition of the functional S, and Xy(x) -

the directional cosines of the external normal to G at the boundary I".
For the boundary problem (4. 7)-(4. 8) to be solvable it is necessary
that the functions aj and y; be connected with the matching conditions.
In what follows we assume that these conditions are fulfilled.

We introduce the notation

ay1 oy
W:(ZL,...,Zm, Yis e o« Ym:s —8—Xl—,...,-5;1r1£),
m
P=(21,.-..,2Zm: Yi,.++, ¥Ym), H(t,x, w,u)=2, zifi(t, X, vy, yx u),
1=1

189}
h(ty X: p: V) :Z Zi@i(t’ X’ yi V)'
1=1

Then the boundary problems (4. 4)-(4. 5) and (4. 7)-(4. 8) may be written
in the form

9H (t, x, w, u) oh(t, x, p, v)
Lity = 557 o yil0, x) =ai(x), x€G, Pjy= 5z,
(4.9)
xe I,
dH (t, x, w, u) n d dH (t, x, w, u)

M.,z = - +E + B;(t, x)

1t 1 k] ’

9yi k=1 ka ayixk
(4.10)
ah(t, X, Ps V) Il aH(t7 X, W, u)
Zi(T’ X) = - (li(X), 1Z = +2: 3 Xk(x)
9Yi k=1 Yixy
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Using the formula (4. 2) one can easily establish for arbitrary twice
sectionally, continuously differentiable functions y;(t, x) and z;(t, %)
that the Ostrogradskiy-Green formula

3

™3

T
ff (ziLigy + yiMjiz) dxdt = =37 J‘ z; Pyy -y Qiz) de dt
o G T

1=1 i=1]o

—I ViZi dx | . (4.11)
G

is valid. Let w(r,x)=(u(t, x), v(t,x)) be a certain permissible control
and y(t, x) and z(t, x) be the corresponding solution of the boundary
problems (4.9) and (4. 10). We will say that the permissible control
w(t, x) satisfies the maximum condition if

H (t, x, w(t, x), u(t,x)) ({(=)) sup H (t, x, w(t, x),u), x€G, 0<tsT,
u€ U

h(t, x, p(t, x), v(t,x)) (=) sup h(t, x, p(t, x), v), x€I', 0st<T,
ve v

where the symbol ((=)) indicates an equality which is valid everywhere
within the domain C (0=st=< T, x€ G) with the exception that there may
exist points located on a finite number of n-dimensional surfaces, the
(n+1)-dimensional volume of which is equal to zero. The symbol (=)
is acfined in an analogous way except that instead of n and G one
should take n-1 and I', respectively. The condition of minimum is
defined in an analogous manner.

THEOREM 7 (the maximum principle). For the permissible control

w(t, x)=(u(t, x), v(t, x)) to be min-optimal (max-optimal) according to
S, it is necessary that it satisfies the condition of maximum (minimum).

This theorem, although it coes not supply the sufficient conditions
of optimality, may serve as a practical instrument for the calculation
of the optimum controls and the corresponding solution of the boundary
problem (4.4)-(4.5). One can become convinced in this fact by
repeating the deliberations carried out in Section L

2. The Formula for the Increment of the Functional S. The Proof of Theorem 7

Let (t, x) be an arbitrary permissible control and y(t, x) and

z(t, x) the corresponding solution of the boundary problems (4. 9) and
(4. 10). Then

63



C:(OgtiT, XCG), g:(OfétsiT, x€I').

We take a certain permissible increment Aw = (Au, Av) of the control
w(t, x) and denote by y +Ay and z+Az the solutions of the same problems
(4.9) and (4. 10) but corresponding to the control w + Aw. Then

m
Al =1[w+Aw, o thw] - [(w, ) =f‘ 20 (BziLy Ay + AzjLyy + 7Ly Ay)
C i:l

l m
- ’I{(t,X,W+AW, u+Au) - H(t, x, w, u)h dx dt +f‘2 (Az; P Ay (4.12)

o (i=1
+ Az Py + z;P;Ay) —|h(t,x, w+Aw, v+AvV) ~h(t x w.v) ; dg =0,
while functions Ay, and z;, 1 =1, ..., mform the solution for the
respective boundary problems

AH(t, x, w, u)

thAY:A 52 , Ayl(O,x) =0, x€ G,
2
(4.13)

oh(t, x, p, v)

PlAY =A —_— x€ I
9z
aH(t, x, w,u) . O d oH (t, x, w, u) \
M;idz= -A ( ! v — (A ’
Yy k=1 “%k ayixk
all(t) X: p’v) >
AZi(T,X):O, XCG, QltAZ = A (4.14)
ay;
n  9H (t, x, w, u)
+3.A X (x), xeT,
k=1 8y1Xk )
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where

oH 9H(t, x, w + Aw, u + Au) 9H (t, x, w, u)

awk - BWk awk ’

oh dh(t,x,p + Ap, v + Av) ah(t, x, p, v)
Aee— = —

9Pk 9Pk 9Pk

Equality (4. 12) is now transformed by means of the formula (4. 11).
Since the functions Ay and Az are the solutions of the respective boundary

problems (4. 13) and (4. 14), we have

m m 8H(t1 X, W, u)
2 f AziLitAy dxdt +f AziP;Ay de :Z J- A Ay
C o i:.l C ayl

n d oH(t, x, w, u)
—Z JAN Ay;l dxdt
k =1 dxk ay;

1=

8yi
n AH (t, x, w, V)
+3. A X (x) | Ayide
k=1 8Yi;;k 1 )
m aH(t, x, w, u)
:E ;f[A Ayl
i= llC 9Yi
n 9H (t, x, w, u) 1
+z A Aink ax dt
1\:1 alek
8h(t, x, p, v)
+1 A Ay d(rl
e avyi ‘

On the other hand
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m m oH
Z [f Azil, 1tAycxct+f AziP; Aydzr] :Z [ A— Azdxdt
1=

7
1= o s 1

dh
+1 A Az:d .
Jan2ne]

Consequently,

m . 1 (N
Z f AziLjtAy ax dt +f AziPiAyde == Z f Awidxdt
1 = C o 1 =1C oWy
(4.15)
zm
IA - Apido,
1_10' /
where N = 2m+ nm - the dimensionality of the vector w.
In an analogous manner we find
m m
Z [J' AziL ltyd><(lt+fAz Plyd} Z [ — Azidxdt
i=1l¢ o i=)
(4.16)

1
+f on lAzido-},
m
Z[f zilidy dxdt +f ziPiAy dc} = _Z[ f x)Ayi(T, x) dx

i:l C o 1 =1 G

+ f Bi(t, x)Ayi(t, x)dxdt +f Yi(t, x)Ayi(t, x) dcrl
C o

m OH n oH

+ Ay: + - Ay. dx dt

i 1[!( dyi k2:1 dyixg S (4.17)
17
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The first sum on the right-hand side of the equality (4.17) represents the
increment AS of the functional (4. 6) during the transition from the
control w(t, x) to the control w(t, x) +Aw. Consequently, from the
relationships (4. 12), (4.15), (4.16), and (4. 17) it follows that

AS = _I[H(t,x, w AW, u+ Au) - H(t, x, w, u)
C

N /9oH 1 oH
_Zl e +_2_A i Awijl dxdt _(}f h(t, x, p + Ap, v+AvV)

1=

em f3h 1 oh
i=.\9pi ¢ 9pi

Applying to the functions h, H, 3H/dw; and ah/dp; the Taylor
formula and keeping within the expansion only the terms of the second

order, one obtains, as it was done in § 1,

as = —f | H(tx wutAu) - H(x w, u)| dxdt

C
(4.18)

_fl h(t, x, p, v+Av) — h{t, x, p, v)] do -7,

o

where n=m + nz,
N
1 OH (t, x, w, u + Au) OH (t, x, w, u)
T]l_—-z: j ( - Awjdxdt
, h ) (4.19)
1 2o oh(t, x, p, v+ Av oh(t, x, p,v
= f ( P ) _ P Apjde ,
i=1¢ opj opi
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§ 5 f ["-H (t, %, w +01Aw, u+Au)
i,k=1C dwWjOWk

92H (t, x, W +0,Aw, v+ Av)

AwjAwk dxdt
W OwWK

(4.19)

9°h(t, x, p +0:Ap, v+Av)
e S
1,k:1 o dpPidpk

azh(t; X, P+94AP: V+AV)]

Ap;Api do .
9piopk

To get the necessary estimates of the residual term m in formula
(4. 18),

we reduce the boundary problem to a system of integro-
differential equations (see

, for instance, work of Zagorskiy®*, pp.
90-96):
t
oH
Ay (t, X):ff K (t, %, T’é)AE d§ dr
o G
. (4.20)
f [ K (6 x 8§ (7 8) dgodT, x€G,
o I”
oh oH
o6, X)= = a— + [ f Ka(t, X,7,6)8 — dg d7
0z dz
0 G
(4.21)
wf [ Ka (6 X, 100 (T€) dgo AT, XET,
o I'
where
oH oH oH dh dh oh
Am—=cz=lAe—,..., A——}, A—=]|A s .., A ,
9z 0z 0zZm dz 02, 9Z2m

Kjk- the Green type matrix. Inserting the value ¢ (t, X) defined in
(4.21) in the right-hand side of the same relationship and repeating
successively a few times the same operation we obtain
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t
n
+f KNG X T (Tn) dpo dT (4.22)
0 1
t n-
_f Y K (t, X, 7n) A —=dodT,
0 I 1=o

where

. .
Kn(t> X, T’n):Kn_l(t! X,T,Y]) +ff Kn—l(t’ X,(l, B)Ko(a, B:T;n)dﬁo— d(l,
7T
§ 1
n-
k™ (t, X, 7, =f f K77 (¢, %,a, )K° (., B,7,m) dgo da,
Tr

The number n is chosen so large that the kernel K™ becomes
bounded. This may be done because of the known estimates of the
Green matrix and of its derivatives (see, for instance, work of
Zagorskiy“, p.- 92). 'Then from (4. 22) we get

! t | an |
w(t)‘<PJ w(T)dT +ff Qn(t,T,m) A;— dndT
0 0o G z
t ah
if [ Ra(tmm) |a—=] dyo dr (4.23)
o
oh
+f A —|do,
r oz

where P - a definite positive constant,

w(t) :f’tll(t, X)\(lcr, Qn ::f IKn(t,X, T,m)| dyo,
I r

Ro: 3 KL xmm|de .
I i:=o¢
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We introduce the notation

t t
wie (1) =f wi_ (1) AT, wo(t) =w(t), Qui=f Qu  (t T,n)dT
0 T

t
Qno= Qn Rpk = Rukor (67,m) A7, Ry = Rp(t,7,m)+1, (4.24)
0

k=2,3,...

Integrating the inequality (4. 23) successively, we find:

t t oH
wid )= P [w (1) d7 4 f f Quic(t,7,m) [A ——|dndT
¢} 0o G z
(4.25)

t 5h

of fRux(t,7,m) |[A—|dodT .
oz

o I

Let us choose the number k so large that the functions Q. and Rpgk
be bounded for 0< 1< t= T, x€ G and put

ff A——- max Qupk(6,7,n)dndT,
0z 0<@:st
t
dh
R(t)Zdef A max Rnk(G,T:T])dO'-
0z <
0 T 0= 0%t

Then from the inequality (4. 25) for 0=6=t we get

Wi (6) = wak 0)do +Q(t) + R(t).

We obtain from this using the known lemma (see work of Nemytskiy and
Stepanon®, p. 19) that

wi(0)<A[Q (1) + R(t)|

for 0=0<t< T and, consequently,

wy (1) = Al Q(t) + R (1),
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where A is a definite positive constant. Thus it follows from the
relationships (4. 23), (4. 24), and (4. 25) that

oH
A—dn+f N (t,7,m)
oz T

oh
A—

d(r] , (4.26)
0oz

t
wie () <f dT[f M, (t,7,m)
: G

where M, and N; are functions of the same type as Q and Ry,
respectively.

Since the number n was chosen sufficiently large, we find from
the relationships (4. 22) and (4. 26) that

T
oH
lo (t, x)|=<f dT[fMZ (t, 7, X,m) [a—|dn
1] G oz
: (4.27)
+ f Ne(t, 7, X,m) A—ldp|,

where M; and N; - the scalar functions of the Green type functions.

The functions 9H/8z and dh/dz are continuous over t and twice
continuously differentiable over other arguments. Consequently, for
each permissible control (4.20) may be differentiated also with respect
to x1, ..., Xpn and by means of the above described method one can
obtain the inequalities

lAgi(t: X)]$g M;(t, x,7T,1m) 21' lAus (T, n)l dTdn

s=1
(4.28)
+f N, (t, %, T,n) f: IAvj(T,n)| dr n0
o J=1
where
0 3]
g:<Y1,---, Ym’—yl—:---: ym)s XCG: Ost=T.
0%, 0Xn
Since the functions Az;(t,x), i=1, ..., m, form the solution of

the boundary problem (4. 14), we find in an analogous manner that
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lAzi(t, X)lsf M,(t, x, T,7) i lAus(T,n)l dn dT
C

s=1
|
+f Ng(t, x,7,m) 2 IAV_](T T])l dr,no,
a j=1
x€ G, O0=stsT, 1=1,..., m.

Because of these inequalities,

J—l

lm' Blfz IAuJ(t XI‘ f My (t, x, T, m) i
1

q
+0:f Nll(t’ X,T,T]) kzzl ‘Avkl d—r,nO'; dx dt

q r
+ B?_fz ‘A\’i(t, X)l‘ f Mll t, x T,T]
o i=1 lC =

q

H Nt xTn) 3T v dene (dxo
a

k=1
where B; - positive constants,

Mip = My + My, Nip= Ny + Ny

Since according to the condition

9%H 92h

and @ — ——
awiawj- Bpiapj

are bounded, then
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we find from (4. 19):

Auj(T, n)ldn dr

(4.29)

(4.30)

|AuJ| dndT




d7dn

IT]Z’Bflent\Tnzl: lAuk
K=

2

dx dt

*lel(t,X,T,T] IAV dT n

J~1

(4.31)

dn dT

1‘B4f
g

Tr
fMll(tix:T:T]) ¢ Z lAuk
C k=

9

’ff Nll(t)XrT’ Y]) Z

o J:]

If one takes into account that the constant B may be chosen such that

|

l\i ({IAul lz(lxdt-‘i:BZ , % f 'Avj(t, x)

then from the inequalities (4. 30) and (4. 31) it follows that for the
residual term n in the formula (4. 18) one has an cstimate:

dT dn

‘lffpt)\'rn' lAul

I

T ‘m’t x, T r) :! IA\ 'UT o dxdt
Nl P : 2
J \ ’ ’ ’I | JI 7"]

a

(4.32)

where the functions P and Q are of the same type as My; and Njp .
Formula (4. 18) and incquality (4. 32) arc analogous to the
corresponding relationships in Section I. Conscquently, the proof

of Theorem 7 conincides almost literally to the proof of Theorem 1.

If the system of cquations (4. 4) is lincar and has the form



m
LitY:Z dik(t, x) yr+ £fi(v), 1 =1,..., m, (4.33)
k=1

while the boundary conditions may be represented in the form

m
Pi(t, x)y =k2 Ciklt xX)yk + (V)

- (4.34)
x€T, y(0,x)=a(x), x€G,

then the following theorem is true:

THEOREM 8. If to each permissible control corresponds a unique
solution of the boundary problem (4. 33)-(4. 34), then, for the control
w(t, x) = (u(t, x), v(t,=)) to bc min-optimal (max-optimal) according to
the functional (4. 6), it is necessary and sufficient that it satisfies the
conditions of maximum (minimum).

The proof of this theorem follows directly from the fact that in
the case under consideration the formula (4. 18) for the increment of
the functional S takes the form

AS = _fl H{t, x, w,u+Au) -~ H(t,x,w,u), dx dt
C
(4.35)

_f, h(t,x, p, v +Av) - h(t, %, p, v)ldO' .
T

3.  Problems with other Optimality Criteria

The just obtained result may be applied to the solution of
problems of optimum control with other optimality criteria.

Let,for instance, the control process be described by the boundary
problem (4. 4)-(4.5) for which the domain G is a rectangle 0sx;sX;
and let one choose as the optimality criterion the functional
T X; X,
5 :fff fo (t, %, ¥, vy, u) dx dx; dt. (4.36)
00 o0

We introduce an auxiliary variable yg by means of the relationship




93yo

_—_— = fO (t: X, YV, Vx U.), YO(XI: X2, O) = YO(X17 0; t) :YO(O;XZ, t): 0.
aXIBXzat

Then the problem reduces to the evaluation of the minimum of the
functional S = yo(X,, Xz, T). We form the function H:

m
H(t, x, w, u) :Z z; £ (t, %, ¥y, yx, u) + 2ofo (t, %, ¥, yx, u).
1=1

The function zj(t, x) is defined by means of the equations

BITI 2 d aﬁ 83Z0
it2 = - + - , i=1,...,m, —_— =90
0¥Vi k=1 9%k \dYVix) 9%, 9%,0t

and additional conditions (see formulas (2. 19) and (4. 10)):

ah(t, x, p, v) 2 9H(t, x, w, u)
Q2 = + 2 Xp(x), x€T
0yi k=1 9Yix)
9 zg 929
=0 for X1:X1, X2:XZ, =0 for t:T, XZZXZ;
ot 0x)
0z 92 a2
O:O for t =T, X1:X1,———ZO—:0 for t = T, ZO:O

Ix; 0x19%2 9x) 9t
BZZO

for Xy = XZ s =0 for Xy = Xl ’ ZO<X1;XZ; T) = "l?
ox,0t

ZI(XI,XZ,T): 0, 1= 1,..., m.

In this manner, zy(x;, xz,t}= -1, and the function H takes form

H = H(t, x, w,u) - fo(t, x,y, yy, u),
where

m
H :E zofo (t, X, ¥, vy, u) .
1=1

Let us study the functional
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1 =1 8X16X28t

T X, X,[ m 532,
I= fff E zilijty + zg ———— —HI(t, x, w, u){ dxpdx; dt
0

T m
+ f[z z;i Py -h(t, x, p, vi|dodt =1, + I,
S Li=a

T X, X, .
L f f 121 ziLity - H(t, x, w, u)| dxadx;dt
0 =

. ]
[Z ziPi(t,x)y ~h(t, %, p, v){ dedt,

T X, X

IZ:fof

0

3%

8X1 8X_;_8X3
0

93
0 [ Yo - fO (t) XV, ¥Yx u)J dXZdX1dt .
By transforming the integrals I} and I, in the same manner as done in
Sections 1 and IV, we obtain a formula for the increment of the
functional (4. 36) in the following form:

T X, XZ _
ff (t, %, w,u+A4Au) - H(t, x, w, u)'dxzdxldt
C 0 0

T
_fflh(t,x,p,v+z_\.v) -h(t, %, p, V)I'd(rdt—n ,
o I

where the residual term 7 is defined by formulas analogous to (4. 19).

Consequently, the necessary conditions of optimality for the
problem under investigation may be formulated in the form of Theorem

7 where in the conditions for the maximum (minimum) of the function
H is substituted by H.

Using the results of Section I, one can analogously investigate
other problems of optimum control processes where for the optimality
criteria one utilizes various nonlinear functions. In particular, the
results obtained may be applied to the study of problems investigated
by Bellman and Osborn’and by Bulkovskiy Lerner®.
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4. Optimum Problems in the Theory of Elliptical Systems

The control problems are analogous to those which were
investigated above and are encountered during the study of diffusion
processes™®, Nevertheless, one must investigate boundary problems
for elliptical equations. Problems of such a type are encountered
during the study of optimum thermal and electrical fields in various

power devices.

At this point we will briefly outline the formulation of the
maximum problem for electrical systems and derive the formula for
the increment of the functional by means of which one finds the
optimality conditions.

Thus, let us deal with an elliptical system of equations
Ly = f(x,v, yX,u), X =(x1, ..., xpn)€ G, (4.37)

where the operator L is defined by the formula (4. 1) and the function
f=(fi, ..., f) is twice continuously differentiable over the totality
of all its arguments. The control parameter u takes the values from
a bounded domain U (closed or open) of an r-dimensional euclidian
space.

Liet further the function y(x) satisfy the boundary conditions
P(x)y = oj(x,y,v), i=1, ..., m, x€I, (4.38)

where @ satisfies the same conditions as fj, and the parameter v takes
values of a bounded domain V of the gq-dimensional euclidian space,

The permissible control w(x) = (u(x), v(x)) is defined in the same
manner as in Part 1, and we assume that over the discontinuity surfaces
of the control the desired function satisfies certain smoothness con-
ditions®®. We assume that we imposc onto the known functions of the
boundary problem, in addition to the above mentioned conditions, some
additional limitations under which for cach permissible control there

exists a unique solution of the particular problem,.

We formulate the problem: among all the permissible controls
we determine the control w(x) (if it exists) such that the corresponding
solution y (x)} of the boundary problem (4. 37)-(4. 38) rcalizes the
minimum {maximum) of the functional

7



m
S =2, [f aj(x)yj(x)dx +f vi(x)yi{x)deo | | (4.39)
i:l G r

where aj(x) and y; (x) are given continuous functions.

We introduce the functions H :z: z;f; and h :2 zjoi. The
function z;(x) is defined as the solution of the boundary problem

oH n d oH
Mz = - _ - aj{x), x€G, (4.40)
ayi <2, dxk\dyixy
dh n oH
Q;z = — - Xk(x) + yi(x) , xe€I” (4.41)

Vi k=1 9Vixk

(the definition of the operators M; and Qj can be found at the beginning
of the paragraph). If it appears that the right-hand side of Equation

(4. 40) contains the derivatives of le(x), cee, vXn(x), then one demands
from the permissible controls that they have sectionally continuous
derivatives with sufficiently smooth discontinuity boundaries. Then

the boundary problem (4. 40)-(4. 41) for each permissible control has
a unique solution.

In the same manner as it was applied above, one can obtain a
formula for the increment of the functional (4. 39) in the following form:

AS = —f{H(x, w, u+Au) —H(x,w,u)ldx
G
(4.42)

_fih(x, p, v+Av) —h(x, p, V)JdO'—T] )
I

where the residual term n is determined using formulas analogous to
(4.19). If the boundary problem (4. 37)-(4. 38) is linear, then n=0, and
consequently, we have as valid:

THEOREM 9. For the permissible control to be locally min-
optimal (max-optimal) according to the functional (4. 39) in the linear
boundary problem (4. 37)-(4. 38) (functions f; and @; are linear iny
and y,) it is necessary and sufficient that this control satisfies the
conditions of maximum (minimum).
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In conclusion we note that the analogous problem (with analogous
results) may be investigation also for the system of hyperbolic equations
with initial and boundary conditions.
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Section V. SOME PROBLEMS OF INVARIANCE THEORY

Let the control process be described by a system of equations with
partial derivatives

Az = f(xy,...,%k, 2z, u), {5.1)

where A is a linear differential operator of parabolic, elliptic, or
hyperbolic type, z = (z1,. .., z,) Is a vector characterizing the state
of the system under control, and u is a vector characterizing the exter-
nal interaction. Let also be given additional conditions which may
contain vector v defining the external interaction on the system. We
assume that the vector w = (u, v) is subjected to the same conditions as
the permissible control in the problems of optimum control discussed
above while the additional conditions are such that to each vector w
corresponds a unique solution of Equations (5.1) with the same additional
conditions,

Let, in addition, be given a certain functional I [7] defined over the
solutions of Equations (5.1). The basic problem of the invariance theory
is to find conditions for which the functional I does not depend on the
external interactions. In the paper by Rozonoer'' it was shown that
the invariance problem may be studied by the methods of the variational
calculus in the case when the control processes are described by ordi-
nary differential equations. Analogously, one may investigate the
invariance problem also for the system with distributed parameters.

We investigated the control system whose behavior is described by
the boundary problem (4. 9) with certain smoothness conditions imposed
on the discontinuity surfaces of the function u{t, x). We assume that
with cach permissible vector w (t, x)= (u)t, x), v(t, x)) is associated
a respective unique solution of the same boundary problem and

m
fl (t, X Y, ny U) :Z dlk(t’ X)Yk + gl(t; X)U,
=1
(5.2)
CDl(t’ X, Yo V): pl (t: X)V’

where, for the purpose of simplification of subscquent formulas, u and
v are viewed as scalar quantities.

As the functional I we utilized the expression (4. 6) in which the

time T and the domain G are viewed as fixed. The "adjoint'" boundary
problem (4.10) has in this case the form
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(5. 3)
Qiz - -vilt, x), ~€T.

The formula (4. 35) for the increment of the functional (4. 6) takes the
form

m

AS . -/Au( gizi) dxdt —/A\'Z p;zido.
C e o

Conscquently, if

m
2ol Nzy(t, =0, v EG
1--1
(5. 4)
m
Z pi(t, x)zi(t, x}=0, xg€I, 0 - t= T,
i1

the functional S does not depend on the external perturbation w(t, x).

By using the method of proving the opposite, it is casy to cstablish

that these conditions arc also necessary for the functional not to depend
onw (sce, for instance, work of R()Z(movr”). For the verification of
the condition (5. 4) onc must find a solution of the boundary problem (5. 3).
However, for the special case presented below, one can establish the
necessary and sufficient invariance conditions expressed through the
cocfficients of the cquations of the boundary problem (4. 9).

Let the control process be described by the equations

m 811.1 n Bzyi
Lyi =20 dyoyk + g (Lyi SR TR YRR dxi0xy
k-1 i, ko J
(5.5)
dik’ g5 - (‘onst)
with the additional conditions
yl (03 X) :ai(x)’ x e G, PY1 Urjl (t’ Y)’ X € I, (5 6)
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here P is a linear differential operator defined over the boundary T,
where the differentiation is carried out in a direction which is towards
the outside relative to G.

Let us study the functional

T
m
S= Z [f a;(x)y;(T, x)dx +/f v;(t, x)yi(t, x) dcrdt]. (5.7)
oI

i1 lG

Then the functions z;(t, x), entering (5.4), are determined from the
equations

m azi n 5 82i
MZi = ‘Z dklzk MZI = at + k ‘a_x— O.Jk
=1

. o]
k=1 1, Xk
(5. 8)
n
o]
j:1 J
with the additional conditions
zi(T, x)- -ai(x), x€G;
(5.9)

where the operator Q is defined according to (4. 3) as being conjugate
to P.

We denote by D and D the matrix of the cocfficients d., and their
conjugate matrix, respectively, and by (r, s) - the scalar product of
the vectors r and s, Since in the case under investigation the boundary

conditions (5.6) do not contain v, the conditions (5. 4) may be written
in the form

R(t, x)=(z, g)= 0, ~x€ G, 0<t=T,.

Applying to this cquality the operator M and taking into account
that z satisfics the system of equations (5. 8), we get

MR(t: X) - (MZ: g) - - (D*Z’ Q) = (Z’ Dg) = 0,

Analogously, we find that




M R{t, x) :(—1)k(z, Dkg) =0, k=0,1,..., m- 1. (5.10)

From this, because of the conditions (5.9), it follows that

MkR(T, x) = -(-1)k (a (x), Dkg): 0, k=0,1, ..., m-1. (5.11)

Putting in Equations (5. 10) x € I  and applying the operator Q, we obtain
taking into account the conditions (5. 9):

OMER(E, x) = (-1)F (Qz, D) - -(- 1) (y (t, x), DXg)= 0,

(5.12)
k=0,1,..., m- 1,

The conditions {5.11) and (5. 12) are necessary for the invariance
of the functional (5. 7) relative to the external interaction u in the boun-
dary problem (5.5) - (5.6). Let us show that these conditions are also
sufficient.

Since according to the condition even one of the vectors a =

{ag, ..., am) and Y = (Y1, ..., Ym) differs from the zero vector, there
exist numbers Ay, ..., X, _1 such that
m-1
k
k=-o
k

Multiplying the k-th eguation {5. 10) by {(-1) X, and summing over all
k, we obtain:

m-1 k Kk
> (1) \y\M R(t, x)=0, x€G, 0<t: T.
k=o

Introducing the notations

k
R, -M R, k=0,1,..., m-2,

wce obtain from this equation and the conditions (5. 10) and (5.11) a homo-
gencous boundary problem for the detcrmination of Ry :
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m-2

(-1) )\m_l MRm_2+(—l) )\m_z Rm-2+...-MR1+XgRg =0

R (T,x) =0, x€ G; QRmp_,(t,x) =0, x¢g T,

m-2

MRm_3 - Rm—z =0, Rm_3(T,X) =0, X € G; QRm_3(t, X) =0, X € I,

MRO = Rl = O, RO(T)X) = Oy XCG: QRO(t,X) = O, X C I. (5.13)

Since we assume that the coefficients of the operators M and Q are
sufficiently smooth, the boundary problem (5.13) has only a trivial
solution (sce, for instance, work of Zagorskoy“, pp. 97-103):

Riy-,(t, x) = Rm-s(t,x) = ... = Ro(t,x)= 0,
and from this follows the validity of the condition

m

D gilt, x)zi(t,x) = 0, x€G.

i=1

This proves:

THEOREM 10. For the invariance of the functional (5. 7) relative
to the external interaction in the boundary problem (5. 5)-(5.6) to be

true, it is necessary and sufficient that the conditions

(a (x), D"g)=0, x€G;
k_y_ .

(Y(t’x))Dg)_O) XCFy

O-¢t<T, k=0,1, ..., m- 1.
be fulfilled,

From the method for the proof of this theorem is clear that the
analogous results may be obtained for boundary problems which were
investigated in Section I. In particular, for the boundary problem (1. 33)
one has to utilize the formula (1. 35) for the increment of the functional
(1. 3) with the function u; defined by means of the boundary problem

(1.34).

Received, 13 March 1964
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